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a b s t r a c t

A systematic study of 2D-axisymmetric, spherical shell models of compressible and incompressible man-
tle convection with constant and variable viscosity and constant and depth-dependent thermodynamic
properties is presented. To account for compressibility effects, we employ the anelastic liquid approxima-
tion. In the case of variable viscosity, an Arrhenius law with strongly temperature and pressure depen-
dent viscosity is considered. We show that assuming compressible convection with depth-dependent
thermodynamic properties strongly influence the geoid undulations. Using compressible convection with
constant thermodynamic properties is physically inconsistent and may lead to spurious results for the
geoid and convection pattern. In addition, we examine the impact of compressibility as well as different
rheologies on the power law relation that connects the Nusselt number to the Rayleigh number. We dis-
cover that the power law index of the Nu–Ra relationship is controlled by the rheology, independent of
which approximation is used. Instead, the bound of this relation is controlled by a combination of differ-
ent approximation and rheology.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since almost five decades mantle convection has been studied
by numerical models. Because of the limitations imposed by finite
computing capacity, several simplifying assumptions have com-
monly been made in most mantle convection studies. One of the
most important of such assumptions is the Boussinesq approxima-
tion. This approximation is valid if the temperature scale height
(i.e. the depth over which temperature increases by a factor of
‘‘e’’ due to adiabatic compression) is much greater than the convec-
tion depth (Mihaljan, 1962; Spiegel and Veronis, 1960). However, a
temperature scale height in the Earth’s mantle is at best only
slightly greater than the mantle depth. Hence, the Boussinesq
approximation could mask some very important stratification
and compressibility effects that influence both the spatial and tem-
poral structure of the convection (Glatzmaier, 1988).

Since the whole mantle thickness of Venus, Earth and Mars are
between 45% and 50% of mean planetary radius (Stevenson et al.,
1983), global models of mantle convection require a spherical
geometry (Bercovici et al., 1992). The pioneer series study of man-
tle convection in spherical geometry has been done by Zebib (e.g.
Zebib et al., 1985; Zebib and Schubert, 1979; Zebib et al., 1983; Ze-
bib et al., 1978, 1980). Following these studies, a number of other

studies in spherical geometry focusing on effects such as phase
changes, variable viscosity, etc. have been published (see e.g. Schu-
bert et al. (2001) for more references). However, in almost all early
models the Boussinesq approximation has been used to simplify
the equations governing fluid motion in order to facilitate numer-
ical computation. Different challenges can be encountered if one is
interested in the geoid, because the density is the primary variable
for the geoid. Therefore, it is important to go beyond the Bous-
sinesq approximation for the geoid computation.

Indeed, the importance of compressible convection has been
discovered in two-dimensional Cartesian geometry for iso-viscous
convection (Jarvis and McKenzie, 1980) and for variable viscosity
(Quareni et al., 1986; Yuen et al., 1987), without looking at the
geoid except for a study by Schmeling (1989) who investigated
the geoid variation in two-dimensional variable viscosity com-
pressible convection. However, Cartesian geoid is not helpful if to
be compared to the real Earth, and spherical models are necessary.
Moreover, he computed the geoid undulations by neglecting
depth-dependence of the thermodynamic parameters, although
the variations of the bulk modulus, thermal expansion and thermal
conductivity are known to be large across the Earth’s mantle (e.g.
Anderson, 1987).

Recently, three-dimensional compressible convection with
depth-dependent thermodynamic properties attracted great atten-
tion (e.g. Tackley, 1996, 2008). Yet, such studies did not focus on
the geoid for compressible cases, especially with depth-dependent
properties.
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In the present paper, we will consider compressibility in our
mantle convection models, assuming that density varies both radi-
ally and laterally, being determined as a function of pressure and
temperature through an appropriate equation of the state. More-
over, thermodynamic properties vary with compression and will
be considered as a function of depth. Since these depth dependenc-
es have a strong effect on the role of top and bottom thermal
boundary layers, and the boundaries controls topography and thus
the geoid, the effect of compression on the geoid will be significant.
The aim of this paper is examining details of the structure of the
spherical axi-symmetric Anelastic Liquid Approximation model
(ALA) with special attention to the Arrhenius rheology, and com-
pare it to the cases of compressible convection without depth
dependent thermodynamical properties, and to cases of the ex-
tended Boussinesq approximation. At the same time, the effects
of the interaction between temperature and pressure-dependent
viscosity and thermodynamic parameters in the compressible
mantle convection on the geoid and topography will be studied.

2. Model description

We employ a time dependent, anelastic liquid model (Jarvis and
McKenzie, 1980), which lies between Boussinesq and fully com-
pressible representations, to account for the compressibility ef-
fects. The anelastic liquid approximation is a very good
approximation of the Earth’s mantle because typical velocities of
the mantle materials are extremely small, so by comparing with
seismic wave velocities, we can neglect elastic waves in the mantle
convection models.

The equations of mass, momentum and energy of a composi-
tionally homogeneous medium are:

r:ðquÞ ¼ 0; ð1Þ
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where t is time, u the velocity, p is the pressure, sij is the deviatoric
stress, T is the absolute temperature, and cp, k, a, g, Q are the specific
heat capacity, thermal conductivity, thermal expansivity, gravity
acceleration, and the rate of internal heating per volume, respec-
tively. These equations are completed by an equation of state that
can be written as a linearized Taylor expansion of density about
some reference state, qr

q ¼ qr 1� aðT � TsÞ þ K�1
iso ðp� phÞ

� �
; ð4Þ

where Ts is adiabatic temperature distribution and ph, Kiso are the
hydrostatic pressure and isothermal incompressibility, respectively.

For a Newtonian fluid in which the bulk viscosity is unimpor-
tant, the stress can be related to the velocity field by a constitutive
equation such as:
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where g is dynamic viscosity and dij the Kronecker delta.
The Eqs. (1)–(3) can be non-dimensionalized by introducing the

non-dimensional variables (see Table 1) and non-dimensional
parameters defined as:

Ran ¼
cpga0DTq2

0d3

k0gref
; ð6Þ

Di ¼
gad
cp

; ð7Þ

where Ran is the nominal Rayleigh number which characterizes con-
vection vigor, and Di is the dissipation number as a measure of the
scale height of the adiabatic temperature. d, and DT are the convec-
tion depth, and temperature difference between top and bottom,
respectively. gref is the reference viscosity corresponding to the refer-
ence temperature equal to 1500 K and a reference depth of 100 km.
(Please see also appendix A of the author’s previous paper, Shahraki
and Schmeling, 2012). Indeed, the definition of the nominal Ra num-
ber for a system with variable coefficients, in particular, viscosity, is
somewhat arbitrary. We choose a definition based on a reference vis-
cosity corresponding to an arbitrary but reasonable sublithospheric
reference temperature, and surface values of the other reference
state variables. Choosing the surface viscosity as a reference viscosity
does not make sense for an Arrhenius-type rheology. An alternative
choice of a nominal Ra number would be using reference values of
the viscosity and the other state variables at the core mantle bound-
ary (CMB). However, these values are less well known than shallow
or surface values. The details for the non-dimensional governing
equation can be found in the Schubert et al. (2001).

The specification of the pressure at one point in the system suf-
fices to establish the pressure. On the contrary, to evaluate the
velocity field we need additional information. The mechanical
boundary conditions at the top and bottom surfaces of the spheri-
cal shell are given by zero radial velocities and a shear stress-free
condition. No pressure boundary conditions are needed, except
that the pressure at one point in the system needs to be fixed. Its
value is arbitrary and may be adjusted such as to result in an aver-
aged zero vertical stress at the surface once the topography is cal-
culated from the surface tractions. In addition, we considered the
hot inner surface and the cold outer surface as isothermal, and
the thermal boundary conditions are given by Tbot ¼ 3653:15 ½K�
at the inner surface and Ttop ¼ 273:15 ½K� for the outer surface.

2.1. Reference state

The reference state is that of an adiabatic, homogenous fluid
under hydrostatic pressure. In this reference state the density
distribution, qr, can be obtained as the solution of the Adams-
Williamson equation,

1
qr

dqr

dr
¼ �qrg

Kad
¼ � ag

cpc
ð8Þ

where Kad is the adiabatic incompressibility and, c is the Grüneisen
parameter which is a measure of the anharmonic character of the
equation of the state (Balachandar et al., 1993) defined as:

c ¼ aKad

qrcp
: ð9Þ

According to the condition of a
c / q�2 (Leitch et al., 1992), Zhang and

Yuen (1996) simplified this equation and derived:

Table 1
Scaling variables.

Symbol Quantity Value

d Thickness of the mantle 2891 km
DT Temperature difference across the mantle 3380 K
r0 Radius of the Earth 6371 km
rcmb Radius of the CMB 3480 km
k0 Thermal conductivity 4Wm�1K�1

q0 Density 4000 kgm�3

Di0 Dissipation number 0.56
cp Specific heat 1250Jkg�1 K�1

a0 Thermal expansion 2:5 � 10�5 K�1

c0 Grüneisen parameter 1.4
g Gravity acceleration 9:8ms�2

Subscript zero identifies reference value at the top boundary.
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