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a b s t r a c t

Using Nevanlinna’s value distribution theory, we study the uniqueness of entire functions
that share only one value and prove some theorems which are related to one famous
problem of Hayman [W.K. Hayman, Research Problems in Functions Theory, Athlone Press,
London, 1967].

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In this paper, a meromorphic function always means a function which is meromorphic in the whole complex plane C .
It is assumed that the reader is familiar with the notations of Nevanlinna’s theory such as T (r, f ), N(r, f ), m(r, f ), N(r, f )
and so on, which can be found, for instance, in [1–4]. We denote by S(r, f ) any function satisfying S(r, f ) = o{T (r, f )}, as
r →+∞, possibly outside of a set with finite measure.
Let f (z) be a nonconstant meromorphic function on the complex plane C and a ∈ C

⋃
{∞}. Set E(a, f ) = {z : f (z)− a =

0}, where a zero point with multiplicitym is countedm times in the set. If these zero points are only counted once, then we
denote the set by E(a, f ). Let k be a positive integer. Set Ek)(a, f ) = {z : f (z)− a = 0, ∃i, 1 ≤ i ≤ k, s.t., f (i)(z) 6= 0}, where
a zero point with multiplicitym is countedm times in the set.
Let f (z) and g(z) be two meromorphic functions. We say f (z) and g(z) share the value a CM (counting multiplicities) if

f (z) − a and g(z) − a have the same zeros with the same multiplicities, i.e., E(a, f ) = E(a, g). If we do not consider the
multiplicities, then we say that f (z) and g(z) share the value a IM (ignoring multiplicities), i.e., E(a, f ) = E(a, g).
Moreover, we use the following notations.
Let a be a finite complex number, and k be a positive integer. We denote by Nk)(r, 1/(f − a)) the counting function for

the zeros of f (z)− awith multiplicity≤k, and by Nk)(r, 1/(f − a)) the corresponding one for which the multiplicity is not
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counted. Let N(k(r, 1/(f − a)) be the counting function for the zeros of f (z)− awith multiplicity≥k, and N (k(r, 1/(f − a))
be the corresponding one for which the multiplicity is not counted. Set Nk(r, 1/(f − a)) = N(r, 1/(f − a))+ N (2(r, 1/(f −
a))+ · · · + N (k(r, 1/(f − a)).
Let f (z) and g(z) be two nonconstant meromorphic functions and E(1, f ) = E(1, g). We denote by NL(r, 1/(f − 1)) the

counting function for 1-points of both f (z) and g(z) about which f (z) has larger multiplicity than g(z), with multiplicity not
being counted, and denote by N11(r, 1/(f − 1)) the counting function for common simple 1-points of both f (z) and g(z).
Similarly, we introduce the notation NL(r, 1/(g − 1)).
Due to Nevanlinna [2], it is well known that if f and g share four distinct values CM, then f is aMöbius transformation of g .

Corresponding to one famous question of Hayman [5], Fang and Hua [6], Yang and Hua [7] showed that similar conclusions
hold for certain types of differential polynomials when they share only one value. They proved the following result.

Theorem A. Let f (z) and g(z) be two nonconstant entire functions, n ≥ 6 be a positive integer. If f n(z)f ′(z) and gn(z)g ′(z)
share 1 CM, then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c2, and c are three constants satisfying (c1c2)n+1c2 = −1, or
f (z) ≡ tg(z) for a constant t such that tn+1 = 1.

Xu and Qiu [8] improved the above result by deriving the following theorem.

Theorem B. Let f (z) and g(z) be two nonconstant entire functions, n ≥ 12 be a positive integer. If f n(z)f ′(z) and gn(z)g ′(z)
share 1 IM, then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c2, and c are three constants satisfying (c1c2)n+1c2 = −1, or
f (z) ≡ tg(z) for a constant t such that tn+1 = 1.

Recently, Fang [9] proved the following results which were an improvement and generalization of Theorem A.

Theorem C. Let f (z) and g(z) be two nonconstant entire functions and let n, k be two positive integers with n > 2k + 4. If
[f n(z)](k) and [gn(z)](k) share 1 CM, then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c2, and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1, or f (z) ≡ tg(z) for a constant t such that tn = 1.

Remark 1. Let k = 1. Then by Theorem C we get Theorem A.

Theorem D. Let f (z) and g(z) be two nonconstant entire functions, and let n, k be two positive integers with n ≥ 2k + 8. If
[f n(z)(f (z)− 1)](k) and [gn(z)(g(z)− 1)](k) share 1 CM, then f (z) ≡ g(z).

Now it is natural to ask by Theorems A and B whether the CM sharing value can be replaced by the IM sharing value in
Theorems C and D? In this paper, we give a positive answer to the above question by proving the following theorems.

Theorem 1. Let f (z) and g(z) be two nonconstant entire functions and let n, k be two positive integers with n > 5k + 7. If
[f n(z)](k) and [gn(z)](k) share 1 IM, then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c2, and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1, or f (z) ≡ tg(z) for a constant t such that tn = 1.

Remark 2. Let k = 1. Then by Theorem 1 we get Theorem B.

Theorem 2. Let f (z) and g(z) be two nonconstant entire functions, and let n, k be two positive integers with n > 5k + 13. If
[f n(z)(f (z)− 1)](k) and [gn(z)(g(z)− 1)](k) share 1 IM, then f (z) ≡ g(z).

Furthermore, based on the idea of multiple values, we obtain the following theorems which improve Theorems C and D
respectively.

Theorem 3. Let f (z) and g(z) be two nonconstant entire functions and let n, k, and m be three positive integers. If
Em)

(
1, (f n)(k)

)
= Em)

(
1, (gn)(k)

)
, and

(i) if m = 1 and n > 4k + 6, then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c2, and c are three constants satisfying
(−1)k(c1c2)n(nc)2k = 1, or f (z) ≡ tg(z) for a constant t such that tn = 1; or
(ii) if m = 2 and n > (5k+ 9)/2, then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c2, and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1, or f (z) ≡ tg(z) for a constant t such that tn = 1; or
(iii) if m ≥ 3 and n > 2k + 4, then either f (z) = c1ecz , g(z) = c2e−cz , where c1, c2, and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1, or f (z) ≡ tg(z) for a constant t such that tn = 1.

Theorem 4. Let f (z) and g(z) be two nonconstant entire functions and let n, k, and m be three positive integers. If
Em)

(
1, (f n(f − 1))(k)

)
= Em)

(
1, (gn(g − 1))(k)

)
, and

(i) if m = 1 and n > 4k+ 11, then f (z) ≡ g(z); or
(ii) if m = 2 and n > (5k+ 16)/2, then f (z) ≡ g(z); or
(iii) if m ≥ 3 and n > 2k+ 7, then f (z) ≡ g(z).
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