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a b s t r a c t

Two alternative formulations of the apparent stress, representing homogeneous crack and triangle pulse
rupture models, are tested. They are termed seismic state equations and express the apparent stress, sa,
as a function of, respectively, two or three other earthquake parameters: seismic moment, M0, rupture
area, A, and, in the latter case, mean slip acceleration, g. The number of parameters is the key difference
between the two models. A variety of possible sa–M0 scalings is obtained by substitution of different
moment–area relations, M0–A, into the seismic state equations, sa(M0,A,g). Both seismic state equations
enable us to explain the observed sa–M0 global trend. However, the triangle pulse solution fits the empir-
ical trend with much higher correlation coefficient. Also the trends obtained for regional data sets are
more consistent with the pulse model than with the crack one.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Two relations between earthquake parameters: the seismic mo-
ment versus rupture area scaling, M0–A (e.g., Hanks and Bakun,
2002, 2008; Mai and Beroza, 2000; Romanowicz, 1992; Roman-
owicz and Ruff, 2002; Scholz, 1982; Shaw and Scholz, 2001; Wells
and Coppersmith, 1994) and the apparent stress versus seismic
moment scaling, sa–M0 (e.g., Abercrombie, 1995; Choy and Boat-
wright, 1995; Ide and Beroza, 2001; Izutani and Kanamori, 2001;
Pérez-Campos and Beroza, 2001), have been disputed for over
two decades as separate problems. The former relation is impor-
tant in the seismic hazard context, whereas the second one can
be treated as a test of seismic source self-similarity (Prieto et al.,
2004). Kanamori and Rivera (2004) pointed out that the M0–A scal-
ing provides constraints on the sa–M0 relation. They demonstrated
that the constant static stress drop condition implies that the
apparent stress does not scale with M0 either. This result assumes
a homogeneous crack earthquake source model or any model, in
which the apparent stress is proportional to the static stress drop.
However, the apparent stress, sa, and the static stress drop, Dr, are
two different physical characteristics of the earthquake rupture
process. Their ratio depends, in general, on the radiation efficiency
or the radiated energy to the fracture energy ratio (e.g., Kanamori
and Brodsky, 2004). It is expected, therefore, that different earth-
quake source models lead to a variety of sa–M0 relationships.

A three step scheme is proposed in this paper. First, apparent
stress is expressed in terms of seismic moment and other parame-
ters that specify a given earthquake source model. This relation-
ship is termed a seismic state equation, in analogy to statistical
physics. Second, a complementary relation among the seismic mo-
ment and rupture area is defined. Third, this complementary rela-
tion is substituted into the seismic state equation to obtain the sa–
M0 scaling.

The reasoning presented by Kanamori and Rivera (2004) can be
considered within this scheme with sa /M0/A3/2 as the seismic state
equation and Dr /M0/A3/2 = const as the complementary relation.
Both of these factors are model dependent. The triangle pulse rup-
ture model proposed by Senatorski (2007, 2008) is used in the pres-
ent paper as an alternative for the homogeneous crack solution. The
triangle pulse model involves average slip acceleration, g, as the
third extra parameter to define the slip velocity pulses. This is the
key feature of the model that determines its scaling characteristics.
Consequently, the seismic state equation involves three parameters
in this case, sa = sa(g,M0,A). It is shown that, unlike the homoge-
neous crack model, the triangle pulse model does not imply the
sa / Dr relation and, therefore, it leads to different sa–M0 scalings.
These theoretical results are compared with real trends observed for
earthquake populations extending from the smallest mining in-
duced tremors to the largest subduction megathrust earthquakes.

The first objective of this paper is to show how the resulting sa–
M0 scaling depends on the assumed earthquake model dynamics
and geometry. The second aim is to demonstrate that the seismic
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state equation based on the proposed triangle pulse model is more
consistent with the available real data than its homogeneous crack
alternative. The complementary M0–A relations are systematized
in the next section. Two seismic state equations are introduced
in Section 3. The resulting sa–M0 scalings are presented in Section 4.
The real data are analyzed in Section 5. Discussion and Conclusions
end the paper.

2. Seismic moment versus rupture area scaling

Seismic moment is expressed in terms of mean slip displace-
ment, �D, and rupture area, A, as

M0 ¼ lDA;

where l is shear modulus. To obtain M0–A scaling, dependence of D
on rupture geometry is needed. In static, homogeneous crack mod-
els, D depends on the characteristic dimensions of rupture: its
length, L, width, W, or area, A (Kanamori and Anderson, 1975; see
also Shearer, 2011). If the characteristic dimension is L, the static
stress drop can be expressed as

Dr ¼ Cl D
L
¼ C

M0

AL
; ð1Þ

where C is a constant. For a circular crack-like model, the character-
istic source dimension is its radius, L ¼ R. For a rectangular source
model, the characteristic dimension is the smaller one of two: W
or L. From Eq. (1), geometrical and physical similarities of seismic
sources, L /W and D / L, respectively (Aki, 1967; Prieto et al.,
2004) imply that Dr = const, which is consistent with observations
(e.g., Allmann and Shearer, 2009).

Two earthquake classes are distinguished. For small to moder-
ate earthquakes, such that W < W0 (W0 is the maximum rupture
width related to seismogenic layer depth), geometrical similarity
is assumed, L = fW (f is a geometrical factor), so the rupture grows
both in W and L. For large earthquakes, where W = W0, the rupture
grows only in L.

Examples of M0–A scalings obtained for different source models
are listed in the left part of Table 1.

(A) In the L model, slip displacement is controlled by rupture
length,

D ¼ aL;

where a is a constant (Scholz, 1982). This scaling agrees with
empirical results showing that slip displacement continues to
grow even after the rupture width reaches the seismogenic
fault depth, W = W0. Consequently, the static stress drop gi-
ven by the homogeneous crack solution,

Dr ¼ lCD=W;

grows with increasing L for large events with W = W0.
According to Scholz (1982), however, such events do not rep-
resent a crack, but the last unbroken asperity failure, so the
right scale length, which involves a deeper, aseismic fault
patch, is L, i.e.,

Dr ¼ lCD=L:

In this interpretation, the L model is consistent with the con-
stant stress drop assumption. For small to moderate events,
the seismic moment scales with L and A as M0 / L3 and
M0 / A3/2, respectively. For large events, the scalings are
M0 / L2 and M0 / A2.

(B) According to the W model, slip displacement is controlled by
rupture width,

D ¼ aW

(Romanowicz, 1992; Romanowicz and Ruff, 2002), so it pre-
dicts that both D and Dr remain constant for large events.
The W model is consistent with the constant stress drop
assumption. For small to moderate events, the seismic mo-
ment scales with L and A as in the L model. For large events,
the scalings are, respectively, M0 / L and M0 / A.
Most studies suggest that earthquakes follow rather the W
than L model (e.g., Manighetti et al., 2007). However, it is also
admitted that D somehow continues to grow with L after the
fault seismogenic depth, W0, is reached.

(C) Shaw and Scholz (2001); (see also Shaw, 2009) combined
both the L and W models. They assumed that

D ¼ a
L=2 for L < 2W0

½ð1=LÞ þ ð1=2W0Þ��1 for L > 2W0

(
:

Consequently, D scales with L for small events and tapers off
at large L. The model predicts constant static stress drop for
both small and large earthquakes. For small earthquakes
the seismic moment scales with L and A in the same way as
in the L and W models. For large earthquakes the relations
are, respectively, M0 / L2/[1 + (L/2W0)] and
M0 / A2=½1þ ðA=2CW2

0Þ�. Manighetti et al. (2007) used that
model to explain large stress drop variability, reflected by
the a factor, in terms of fault segmentation and its structural
maturity.
Next three models go beyond the homogeneous crack-like
rupture view.

(D) Dynamic, pulse-like rupture models assume that slip dura-
tion at a point, i.e., rise time, is shorter than earthquake
duration, tR < T (Heaton, 1990). Such a slip velocity pulse
can be modeled as a continuous dislocation distribution
moving along a fault (e.g., Weertman and Weertman,
1980). The difference between stresses before and after rup-
ture front passage, i.e., stress drop, scales with the slip to
pulse length ratio, Dr / D=LP (e.g., Senatorski, 2008). Conse-
quently, the constant stress drop assumption implies the

D ¼ aLP

scaling. For small to moderate events, the seismic moment
scales with L and A as M0 / L2LP and M0 / ALP, respectively.
For large events, the scalings are M0 / LLP and M0 / ALP. It
should be noticed that though D does not directly depend
on the final rupture dimensions, it can depend on L somehow.
This is because larger slip velocity pulses are expected to
propagate farther (Scholz, 1982; Heaton, 1990; Liu-Zeng
et al., 2005; Mai and Beroza, 2000). Larger pulses concentrate
higher stresses ahead of rupture fronts, therefore they are
less likely to be arrested by barriers randomly distributed
along fault planes.

(E) Liu-Zeng et al. (2005) modeled a heterogeneous slip function
as the stochastic fractional Brownian process, obtaining the

D ¼ aLc

scaling, where exponent c depends nonlinearly on a parame-
ter that describes spatial smoothness of slip. Ruptures with
smooth slip functions produce D that is linearly proportional
to L (c = 1), and exponent c gradually decreases for rougher
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