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a b s t r a c t

Deformed by tidal forces, the cavity of a planetary fluid core may be in the shape of a biaxial ellipsoid

x2=a2 þ y2=b2 þ z2=a2 ¼ 1, where a and b are two different semi-axes and z is in the direction of rotation.
Gravitational interaction between a planet and its parent star exerts an axial torque on the planet and
forces its longitudinal libration, a periodic variation of its angular velocity around its rotating axis. Lon-
gitudinal libration drives fluid motion in the planetary core via both viscous and topographic coupling

between the mantle and fluid. For an arbitrary size of the equatorial eccentricity E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
=a, direct

numerical simulation of the fully nonlinear problem is carried out using an EBE (Element-By-Element)
finite element method. It is shown that fluid motion driven by longitudinal libration vacillates between
two different phases: a prograde phase when the planet’s rotation speeds up and a retrograde phase
when it slows down. For weak longitudinal libration, the fluid motion is laminar without exhibiting
noticeable differences between the two phases and a multi-layered, time-independent, nearly geo-
strophic mean flow can be generated and maintained by longitudinal libration in a biaxial or triaxial ellip-
soidal cavity. For strong slow libration, there are profound differences between the two different phases:
the retrograde phase is usually marked by fluid motion with instabilities and complex spatial structure
while in the prograde phase the flow is still largely laminar.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

As a consequence of the variation of gravitational force across a
planet, the form of many planets may be described by a biaxial
ellipsoid (for example, Dermott, 1979),

x2

a2 þ
y2

b2 þ
z2

a2 ¼ 1; ð1Þ

where z is in the direction of rotation, x points to the parent star of
the planet, and the semi-axes a and b are different (a > b). Gravita-
tional interaction between a planet of biaxial ellipsoidal shape and
its parent star can force longitudinal libration, a periodic variation
of its angular velocity around its rotating axis (for example, William
et al., 2001). Longitudinal libration represents an important dy-
namic property of many planets which has been employed to verify
the existence of liquid layers in planetary interiors and to determine
the thickness of the overlying mantle (for example, Margot et al.,
2007; Baland and Van Hoolst, 2010). The present study is mainly
concerned with the dynamic response of a planetary liquid core,

confined in a biaxial or triaxial ellipsoidal cavity, to its longitudinal
libration.

The dynamical response of a spherical liquid core (a ¼ b) to
planetary longitudinal libration is quite different from that of a
biaxial ellipsoidal core (a–bÞ. In a spherical cavity, which is axi-
symmetric with respect to the rotation axis, the coupling between
the librating solid mantle of a planet and its liquid core is purely
viscous. A number of authors have investigated librationally driven
flows in a spherical cavity. Aldridge and Toomre (1969) (see also
Greenspan (1968)) studied axisymmetric inertial oscillations in a
librating spherical container experimentally, revealing the reso-
nance of axisymmetric inertial modes at some particular librating
frequencies. The problem of spherical libration was also recently
investigated by experimental and numerical methods (Noir et al.,
2009; Tilgner, 1999; Sauret et al., 2010) and analytically (Busse,
2010). It is the viscous coupling between the solid mantle and
the core fluid, via the thin Ekman boundary layer and its mass flux,
that plays an essential role in determining the structure and ampli-
tude of the fluid motion driven by longitudinal libration in spher-
ical geometry.

In a biaxial ellipsoidal cavity with a–b, which is non-axisym-
metric with respect to the rotation axis, the fluid core and the solid
librating mantle are coupled via both topographical and viscous ef-
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fects. Suppose that the fluid core of viscosity m is confined within a
biaxial ellipsoidal cavity with b2 ¼ a2ð1� E2Þ, where E is the equa-
torial eccentricity, and that the planet rotates non-uniformly with
mean angular velocity X0. For small equatorial eccentricity
0 < E 6 OðE1=4Þ, where E is the Ekman number defined as
E ¼ m=ða2X0Þ, the topographic and viscous couplings are equally
important in determining the primary properties of librationally
driven flows. But typical values of the Ekman number E for many
planets are extremely small, E 6 Oð10�14Þ, such that
OðE1=4Þ � E < 1. In this case, the topographic coupling between a
librating mantle and its liquid core would be predominant
although the viscous boundary layer at the core–mantle boundary,
together with its nonlinear effect, can play an essential role in gen-
erating mean flows in librating biaxial or triaxial ellipsoidal
cavities.

In a recent asymptotic analysis of weakly librating flows for a
biaxial ellipsoidal cavity with moderate equatorial eccentricity
E1=4 � E� 1 (Zhang et al., 2011), it is found that (i) longitudinal
libration, via the topographic coupling between the librating man-
tle and the fluid core, can drive non-axisymmetric oscillatory mo-
tion with the azimuthal wavenumber m ¼ 2 and (ii) resonance
with inertial modes cannot take place at any frequency of libration.
The present study will focus primarily on strongly librating flow
driven by planetary longitudinal libration in a biaxial ellipsoidal
fluid core with moderate or large equatorial eccentricity
E1=4 < E < 1, in attempting to provide a clear understanding of
the topographic and viscous coupling between a librating planet
and its liquid core. In the first part of this study, we shall extend
the previous asymptotic analysis (Zhang et al., 2011) for a biaxial
ellipsoid to that for a triaxial ellipsoidal cavity, which will be vali-
dated by fully three-dimensional simulation using an EBE (Ele-
ment-By-Element) finite element method (Chan et al., 2007). We
shall also extend the previous numerical simulation for weak libra-
tion, which behaviors almost linearly, to that of the strongly non-
linear regime where secondary or higher instabilities can occur.

In what follows we shall begin by presenting the governing
equations in the mantle frame for the longitudinal libration prob-
lem in Section 2. A brief discussion of the asymptotic solution for
weakly librational flow in a triaxial ellipsoid is presented in Section
3 while the result of direct numerical simulation for both weakly
and strongly librational flow is presented in Section 4. A summary
and some remarks are given in Section 5.

2. Mathematical formulation of the problem

Consider a viscous, homogeneous fluid of viscosity m confined in
a biaxial or triaxial ellipsoidal cavity. Suppose that the ellipsoidal
container rotates rapidly with a non-uniform angular velocity X gi-
ven by

X ¼ ẑ X0 1þ d sin x̂tð Þ½ �; ð2Þ

where X0 is the mean rate of rotation, ẑ is a unit vector in the direc-
tion of rotation, x̂ is the libration frequency of the planet and X0d
represents the dimensional amplitude of longitudinal libration. In
a frame of reference attached to the container, the mantle frame,
librationally driven flows in the ellipsoidal cavity of an incompress-
ible fluid are governed by the dimensional equations (see, for exam-
ple, Greenspan, 1968):

@u
@t
þ u � $uþ 2ð1þ d sin x̂tÞX0ẑ� uþ 1

q
$p

¼ m$2uþ r� d
dt

X0ð1þ d sin x̂tÞẑ½ �; ð3Þ

$ � u ¼ 0; ð4Þ

where d > 0, r is the position vector, p is a reduced pressure, u is the
three-dimensional velocity field u ¼ ður; uh;u/Þ with corresponding
unit vectors ðr̂; ĥ; /̂Þ in spherical polar coordinates ðr; h; /Þ with
h ¼ 0 at the axis of ẑX and r ¼ 0 at the center of the ellipsoid. The
centrifugal force is combined with other conservative forces to form
the reduced pressure p. The final term on the right-hand side of (3)
is known as the Poincaré force, which drives librational flow against
viscous dissipation. The libration amplitude X0d controls the degree
of nonlinearity of the problem. It is helpful to distinguish two differ-
ent phases during a period of longitudinal libration: a prograde
phase when the planet rotates faster than the mean rate, marked
by sin x̂t > 0 in (3), and a retrograde phase when sin x̂t < 0. The
transition instant between the prograde and retrograde phases,
identified by sin x̂t ¼ 0, will be referred to as the turning point.

Employing the semi axis a as the length scale, X�1
0 as the unit of

time and qa2X2
0 as the unit of pressure yields the dimensionless

equations:

@u
@t
þ u � $uþ 2ẑ� uþ $p ¼ E$2u� 2dẑ� u sin x̂ltð Þ

þ ðdx̂lÞ r� ẑð Þ cos x̂ltð Þ; ð5Þ

$ � u ¼ 0; ð6Þ

where the Ekman number, E ¼ m=ðX0a2Þ, provides the measure of
relative importance between the typical viscous force and the Cori-
olis force, x̂l ¼ x̂=X0 is the dimensionless frequency of libration
and d, the Poincaré number or the libration amplitude, quantifies
the strength of the Poincaré forcing. Librationally driven flow on
the bounding surface, S, of the container is at rest, requiring that

n̂ � u ¼ n̂� u ¼ 0; ð7Þ

where n̂ denotes the normal to the bounding surface, S, of the biax-
ial or triaxial ellipsoidal cavity.

The problem defined by Eqs. (5) and (6) subject to the boundary
conditions (7) will be first solved by an asymptotical method for
weakly librational flow in a triaxial ellipsoid in Section 3 and by
a numerical method via direct nonlinear simulation for both weak
and strong longitudinal libration in Section 4.

3. Asymptotic solution in a triaxial ellipsoid

We first extend the previous asymptotic analysis for a biaxial
ellipsoid (Zhang et al., 2011) to that for a triaxial ellipsoid, demon-
strating that the size of the polar eccentricity is of secondary
importance in longitudinally libration-driven flow. Without loss
of general physics, we assume that a triaxial ellipsoid is described
by the dimensionless equation

x2

1
þ y2

ð1� E2Þ
þ z2

ð1þ E2Þ
¼ 1; ð8Þ

where E1=2 � E2 � 1, which allows us to ignore the viscous effect to
the first approximation. Consequently, the non-slip boundary con-
dition (7) becomes

n̂ � u ¼ 0: ð9Þ

For weak longitudinal libration d� E2, we seek an asymptotic solu-
tion to (5) and (6) by expanding the variables, u and p, in a series in
powers of d and E2

u ¼ du0 þ ðdE2Þu1 þ � � � ; p ¼ dp0 þ ðdE2Þp1 þ � � � ; ð10Þ

where u0 and p0 denote the leading-order solution directly driven
by the Poincaré forcing while u1 represents the flow in connection
with the topographic effect of a triaxial ellipsoid. We may also ex-
pand the normal n̂ of the bounding triaxial ellipsoidal surface S

around the spherical surface r ¼ 1, which gives rise to
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