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The influence of anisotropic diffusion coefficients on diffusion-controlled high-temperature creep is
examined. Anisotropic diffusion affects anisotropy of diffusion-controlled deformation of a single crys-
tal. The shape change of a single crystal by diffusional mass flux is controlled directly by the anisotropy
in diffusion coefficients. The rate of shape change of a single crystal by diffusion-controlled dislocation
glide is controlled by the anisotropy of diffusion coefficients on the plane normal to the dislocation line.
Consequently, if a polycrystalline aggregate is deformed uniformly by diffusion creep, then the rate of
Keywords: deformation is controlled by that of diffusion (of the slowest diffusion species) along the slowest direc-
Diffusion tion. In contrast, when a polycrystalline aggregate is deformed by climb-controlled dislocation creep, the
Creep rate of deformation is controlled by the diffusion (of the slowest diffusion species) along the direction
where the diffusion coefficient has the intermediate value. The results are applied to olivine and post-
perovskite. For olivine, the observed large plastic anisotropy and small anisotropy in diffusion suggests
that high-temperature power-law creep is controlled not only by diffusion but also by some other factors
such as jog density. For post-perovskite, the results of numerical calculations on the mobility of vacancies
would suggest that the viscosity of post-perovskite aggregates is higher than or comparable to that of the
perovskite aggregates if the defect concentrations were the same among these minerals. However, cur-
rently nothing is known about the defect concentrations in post-perovskite and other coexisting phases,
and therefore it is impossible to compare the creep strength among coexisting phases from these results.
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1. Introduction

Two recent papers motivated me to examine the role of
anisotropic diffusion in controlling the creep strength of a polycrys-
talline aggregate. Firstly, Ammann et al. (2010) showed, based on
numerical calculations, that the mobility of vacancies (at Mg and Si
sites) in the post-perovskite phase is highly anisotropic (~8 orders
of magnitude difference in diffusion coefficient), and the fastest dif-
fusion coefficients of these defects in the post-perovskite phase are
much faster than those of Si and Mg is perovskite (and compara-
ble to diffusion of Mg and O in MgO) whereas the slowest diffusion
coefficient in the post-perovskite phase is much slower than those
of Si and Mg in perovskite. Based on the inferred large diffusion
anisotropy, Ammann et al. (2010) discussed that the viscosity cor-
responding to diffusion creep of a polycrystalline aggregate of
post-perovskite is higher than that of perovskite (comparable to
thatin MgO), but the viscosity corresponding to dislocation creep in
post-perovskite is much lower than that of perovskite. Their argu-
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ment is based on the premise that diffusion of the slowest species
along the slowest direction controls the viscosity of a polycrys-
talline aggregate deformed by diffusion creep, but the diffusion of
the slowest diffusing species along the fastest orientation controls
the viscosity of a polycrystalline aggregate deformed by disloca-
tion creep. However, there has been no theoretical analysis on these
issues, and consequently the validity of their conclusions is unclear.

Secondly, Kohlstedt (2006) re-examined the connection
between diffusion and high-temperature dislocation creep in
olivine, and concluded that a classic model of diffusion-controlled
dislocation creep (e.g., Weertman, 1955, 1957, 1968, 1999) applies
to olivine. The main argument by Kohlstedt (2006) to support this
classic model is (i) the similarity in the activation energy between
creep of polycrystalline aggregate and the activation energy of Si
(and O) diffusion (Costa and Chakraborty, 2008; Dohmen et al.,
2002), (ii) the near agreement of the amount of water effects on
diffusion and creep and (iii) the agreement of predicted strain-
rates from a simple model with observed ones. Although the near
agreement in activation energy between these processes, based on
the recent diffusion measurements cited above, is remarkable, it
is not entirely clear if this implies a simple link between diffu-
sion and creep in olivine. There are several issues that need to be
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examined. First, Bai et al. (1991) showed that creep behavior of
olivine single crystal is complex having a range of activation energy
depending on the orientation and thermodynamic conditions. Con-
sequently, Bai and Kohlstedt (1992a), for example, proposed the
role of jogs to control the creep rate (see also Karato, 1989). Sec-
ond, the experimental studies on diffusion also showed very weak
anisotropy compared to anisotropy in single crystal deformation
of olivine. Third, a diffusion-controlled dislocation creep model is
difficult to explain the observed fabric transitions in olivine (Karato
et al., 2008).

In order to address these issues, it seems important to examine
the link between plastic anisotropy and anisotropic diffusion coeffi-
cient. In this paper, [ will first briefly review the role of anisotropic
diffusion in diffusion creep in a polycrystal, and then develop a
model of dislocation climb in a material with anisotropic diffu-
sion coefficient to clarify the link between anisotropic diffusion
and the creep strength of a polycrystalline aggregate deformed
by dislocation creep. I will show that rate-controlling diffusion in
diffusion creep is diffusion along the slowest direction, whereas
that in dislocation creep in a polycrystalline aggregate is the dif-
fusion coefficient along the direction in which diffusion coefficient
has an intermediate value. Some implications for deformation of
post-perovskite and olivine will be discussed.

2. Theory
2.1. Diffusion creep

Although theory of diffusion creep was developed long time ago
(e.g., Herring, 1950; Lifshitz, 1963; Nabarro, 1948), there has been
no theoretical analysis to examine the influence of anisotropic dif-
fusion. In all of these papers, isotropic diffusion coefficient was
assumed. Only paper where the influence of anisotropic diffusion
in diffusion creep that I am aware is Yang and Li (1995) where some
very specific cases were discussed.

Extension of diffusion creep model for anisotropic diffusion is,
however, straightforward. We use a concept that for a polycrys-
talline material to deform by diffusion creep, the continuity in
displacement at grain-boundaries needs to be satisfied (Lifshitz,
1963). A simple case where this condition is met is homogeneous
deformation, and I assume that this condition is met. The classic
model of diffusion creep shows that for a material that deforms by
diffusion creep, strain-rate and stress are related by

2
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where o is stress, ¢ is strain-rate, Ris the gas constant, £2 is the molar
volume, L is grain-size (I consider volume diffusion for simplicity),
D is diffusion coefficient and 7 is viscosity.

In order to extend this model to anisotropic diffusion, let us con-
sider, first, a single crystal subjected to stress along three directions
(x;, i=1, 2, 3). In the following, I will use the coordinate system
where the main axes are parallel to the main axes of a crystal where
the diffusion coefficient tensor is diagonal. General conclusions will
not be affected by this choice of the coordinate system. By extend-
ing the treatment such as a model by Lifshitz (1963) to anisotropic
diffusion, I obtain,
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where oj; is normal stress acting on the grain-boundary normal to
the x; direction, &;; is the shortening rate along the x; direction, Dj; is
diffusion coefficient along the x; direction when the force is acting
along that direction.

If a polycrystal deforms homogeneously, then strain in each
grain must be the same. This means that the stress on individual

Ojj =& éii (l=]7273) (2)

grains is different depending on the magnitude of diffusion coeffi-
cient, Dj;. The total stress of the sample is the arithmetic mean of
the local stress, hence,

o= <akgz<;ﬁ>>g:ng 3)

where (1/D;; ) is the average of 1/D;;.
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Hence I conclude that in diffusion creep of a polycrystalline
material made of crystals with anisotropic diffusion coefficient, it
is the diffusion coefficient along the slowest direction that controls
the viscosity (if one component of diffusion coefficient is zero, a
polycrystalline material cannot deform by diffusion creep homo-
geneously).

2.2. Diffusion-controlled dislocation creep

Let us now consider deformation by dislocation creep that is
rate-controlled by dislocation climb. Dislocation climb involves
atomic diffusion, and I will consider how anisotropy in diffusion
affects the anisotropy in deformation by climb-controlled disloca-
tion creep. The shape change due to dislocation glide is determined
by the magnitude of slip for a given slip system, and geometry
of shape change is controlled solely by the direction of slip and
the orientation of the glide plane. Several slip systems exist for a
given crystal and a multiple of slip systems are needed to achieve
homogeneous deformation of a polycrystal (von Mises, 1928). At
high temperatures, the rate at which dislocation glide occurs is
controlled by dislocation recovery that is in turn controlled by
diffusion. In this paper, I will consider a case where the rate of
deformation by dislocation glide is controlled by diffusion. In such
a case, the rate of deformation for each slip system is controlled by
the diffusion coefficient relevant to that slip system. Because the
homogeneous deformation of a polycrystalline aggregate requires
the operation of multiple slip systems (von Mises condition), the
rate of deformation of a polycrystalline aggregate is in most cases
controlled by that of the most difficult slip system (Kocks, 1970).

In the following, I will examine how the anisotropy in diffusion
coefficient affects the choice of the most difficult slip system. I will
assume that the creep rate is controlled by the diffusion-controlled
climb motion of an edge dislocation (Weertman, 1957, 1999). Under
this assumption, the strain-rate for a certain slip system is deter-
mined by the rate of dislocation climb for a certain type of an edge
dislocation, and the strain-rate is related to the velocity of dislo-
cation climb, v, as (e.g., Karato, 2008; Poirier, 1985; Weertman,
1999)

. L
&= ,obvca (5)

where ¢ is strain rate, p is the density of mobile dislocations, L is
the characteristic length of dislocation glide, d is the characteristic
length of dislocation climb, and v, is the velocity of dislocation
climb.

The climb velocity of dislocation is controlled by diffusion and
the number density of jogs on the dislocation line, viz.,

o — 2n0f2 DG of2
©~ "RT log(L/b) — RT

where o is stress, §2 is the molar volume of diffusing species, ¢ is
jog density (number of jogs per unit length), b is the length of the
Burgers vector, L is the mean distance of dislocations, and D is the
relevant diffusion coefficient (e.g., Karato, 2008; Poirier, 1985). In
case a dislocation line is saturated with jogs, then ¢;=1/b and the
anisotropy in climb velocity is solely controlled by the anisotropy
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