
Physics of the Earth and Planetary Interiors 178 (2010) 8–15

Contents lists available at ScienceDirect

Physics of the Earth and Planetary Interiors

journa l homepage: www.e lsev ier .com/ locate /pepi

Multiple inner core wobbles in a simple Earth model with inviscid core

Yves Rogister ∗

Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS-Université de Strasbourg, 5 rue René Descartes, 67084 Strasbourg, France

a r t i c l e i n f o

Article history:
Received 30 December 2008
Received in revised form 9 August 2009
Accepted 31 August 2009

Edited by: K. Zhang and M. Bergman.

Keywords:
Inner core
Earth’s rotation
Normal modes
Core dynamics

a b s t r a c t

The inner core wobble (ICW) is the chandler wobble of the inner core. Its predicted period for the PREM
model is about 7.5 years, based upon the resolution of the Liouville equations of conservation of angular
momentum. Here, solving the local equation of conservation of linear momentum with a truncated chain
that couples the toroidal and spheroidal displacement fields, the ICW is computed for a model made
up of three homogeneous layers: an incompressible liquid outer core and rigid mantle and inner core.
Contrary to the angular momentum approach, as implemented up to now, that provides a single ICW, the
linear momentum approach shows that the dynamics of the neutrally stratified outer core may generate
a family of ICWs with periods ranging from a few dozens to thousands of days. The mode with the largest
wobble amplitude in the inner core has a period close to that obtained with the angular momentum
approach.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The volume, mass, and mean moment of inertia of the solid
inner core are, respectively, 0.7, 1.7, and 0.07% of those of the whole
Earth. Because these quantities are so small and the inner core is
surrounded by the fluid outer core, it weakly couples to the man-
tle and, at the surface, some of its motions are barely or not yet
observable by present techniques. The coupling to the outer core
and mantle may be, for instance, mechanical, topographic, grav-
itational, electromagnetic, or viscous. Examples of free motions
almost entirely confined to the inner core are its translational free
oscillations, also called the Slichter modes, the free inner core nuta-
tion (FICN) and inner core wobble (ICW), which is its chandler
wobble (CW). This paper is devoted to the theoretical calculation
of the ICW. It is one of the four rotational modes of a rotating ellip-
soidal Earth model, the others being the free core nutation (FCN),
FICN, and CW. Like the Slichter modes, the ICW heavily depends
on the difference between the mean density of the inner core and
the density of the outer core at the inner core–outer core bound-
ary (ICB). It was first theoretically considered by Busse (1970) to
explain the Markowitz wobble (Markowitz, 1960, 1968) which is a
decadal polar motion that is currently still unexplained (Dumberry,
2008). Noticeable improvements to Busse’s model were brought by
Kakuta et al. (1975), Mathews et al. (1991a), Rochester and Crossley
(2009) and Dumberry (2009). In these studies, the rotational modes
are computed by solving the equations of conservation of angular
momentum, or Liouville’s equations, which are obtained by inte-

∗ Corresponding author. Tel.: +33 3 68855021; fax: +33 3 68850291.
E-mail address: Yves.Rogister@unistra.fr.

grating over the inner core, outer core, and entire Earth the cross
product of the position vector and the local equations of motion.
The elastic deformation and outer core flow accompanying the
rigid nutation are computed for a non-rotating spherical model
perturbed by a static body force that is the variation of the centrifu-
gal force induced by the rigid nutation. The angular momentum
approach is therefore a hybrid method involving both the local
equations of conservation of linear momentum and volume inte-
grals.

From the observational point of view, the search by Guo et al.
(2005) of a signal related to the ICW in polar motion data was
unsuccessful.

In this paper, I use the normal modes theory of a rotating
ellipsoidal Earth model (Smith, 1974) to investigate the ICW of
a model made up of three homogeneous layers: rigid inner core
and mantle and an incompressible fluid outer core. The method
consists in numerically solving a truncated set of ordinary differ-
ential equations over radius obtained by expanding the equations
of conservation of linear momentum in generalized spherical har-
monics. Its main advantage over the angular momentum approach
is that it includes the seismic normal modes, the inertia-gravity
spectrum of the liquid core, and the rotational modes. In particular,
it takes account of the interaction between the rotational modes
and the inertia-gravity spectrum of the core, whereas the angular
momentum approach is meant for studying the rotational motions
only.

The paper is organized as follows. In Section 2, the major
theoretical approaches to the calculation of the ICW are briefly
reviewed, as well as the significant results derived from them.
Section 3 contains a short description of the linear momen-
tum description adopted here to compute the ICW. In Section 4,
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Table 1
Earth model made up of three uniform layers. Rigidity in both the inner core and
mantle is approached by taking a large S-wave velocity and incompressibility is
approached by taking a large P-wave velocity. The wave velocities are 103 to 104

bigger than those of realistic Earth models.

Layer Radius (km) � (kg/m3) vp (m/s) vs (m/s)

Inner core 1221.5 12,894 5 × 107 5 × 106

Outer core 3480.0 10,901 5 × 107 0
Mantle 6371.0 4,449 5 × 107 5 × 106

numerical results for the ICW of the simple model mentioned above
are reported on. Section 5 will complete the paper with concluding
remarks.

2. Busse’s, Kakuta et al.’s and angular momentum
approaches

Busse (1970) considered an ellipsoidal Earth model that is rotat-
ing at a mean angular speed ˝ and made up of three homogeneous
layers: a rigid inner core, an incompressible liquid outer core, and
a rigid mantle. By neglecting gravitation, he obtained the following
analytical formula for the ICW eigenfrequency:

ωICW = �IC − �OC

�IC
eIC˝, (1)

where �IC and �OC are the densities of the inner and outer cores,
respectively,

eIC = CIC − AIC

AIC
, (2)

is the dynamical flattening and AIC and CIC are, respectively, the
equatorial and polar moments of inertia of the inner core. Besides,
he assumed that the flow in the outer core is geostrophic and, as a
consequence of the Taylor–Proudman theorem, is confined inside
a cylinder parallel to the rotation axis and tangent to the ICB.

Kakuta et al. (1975), who, contrary to Busse (1970), included
gravitation in the local equation of conservation of linear momen-
tum for the outer core, also obtained the ICW eigenfrequency (1).
But, as was pointed out by Rochester and Crossley (2009), this
resulted from a small error in the estimation of the gravitational
torque exerted on the inner core. The correct eigenfrequency is
actually given by formula (3).

Fig. 1. Eigenfrequencies of CW, ICW, and pseudo-modes of the Earth model
described in Table 1 as a function of the number of nodes of W−1

1 (r) in the outer
core. They are computed for the TST coupling chain (7), except for the ICW eigenfre-
quency given by Eq. (3), which is designated by a filled circle. The CW is designated
by an empty circle. The positions of both the CW and ICW on the horizontal axis are
arbitrary. Most of the energy of the pseudo-modes marked by a + (resp. ×) sign is
concentrated in the lower (resp. upper) outer core, as shown in Fig. 2 (resp. Fig. 3).

Table 2
For the Earth model described in Table 1, ICW period (in solar days) corresponding
to eigenfrequency (1) (Busse, 1970), CW and ICW periods (in solar days) obtained
by using the angular momentum (AM) approach (Mathews et al., 1991a; Rochester
and Crossley, 2009) and linear momentum (LM) approach with a TST coupling chain
Eq. (7). In the AM approach, the ICW eigenfrequency is given by formula (3).

CW ICW

Eq. (1) – 2583
AM 256 842
LM 256 Multiple (see Fig. 2)

Mathews et al. (1991a) considered a more elaborate Earth
model. The layers are heterogeneous, the fluid outer core is com-
pressible, and the mantle is elastic. But, elastic deformations of
the inner core in response to its tilt were not properly taken
into account when calculating the ICW. Their theoretical approach
relied on the Liouville equations of conservation of angular momen-
tum for the inner core, outer core, and whole Earth, and on the
coupling between the layers owing to pressure and gravitational
torques at both the ICB and CMB. They derived an expression for the
ICW eigenfrequency that yields formula (1) when the same model
as that of Busse (1970) is considered and gravitational coupling
between the inner core and mantle is neglected:

ωICW = ˛3(1 + ˛g)eIC˝, (3)

where

˛3 = 1 − A′e′

AICeIC
, (4)

˛g =
(

3G

a5
IC˝2

)[(
1 + 5�̄IC

3�OC(aIC)

)
A′e′ − AICeIC

]
− 1, (5)

A′ and e′ are, respectively, the equatorial moment of inertia and
dynamical flattening of an ellipsoid the same mean radius aIC as
the inner core and constant density equal to the density �OC(aIC) of
the outer core at the ICB, and �̄IC is the mean density of the inner
core. Notably, the outer core compressibility does not enter Eq. (3)
and gravitational coupling between the inner core and the rest of
the Earth increases the eigenfrequency given by Eq. (1) by a factor
3 or 4.

Rochester and Crossley (2009) showed that elasticity of the
inner core increases the ICW period by 10–15%, depending on the
Earth model. They, like Mathews et al. (1991a), solved the Liouville
equations for the conservation of angular momentum. The nov-
elty of their method resides in the Lagrangean formulation of the
Liouville equations. Moreover, they found that, at very long peri-
ods, solving Poisson’s equation in the outer core does not require a
detailed knowledge of the displacement field in the outer core. The
period they obtain for the PREM model (Dziewonski and Anderson,
1981) is approximately 2750 days. Stimulated by Rochester and
Crossley’s (2009) paper, Dumberry (2009) reworked the analysis of
Mathews et al. (1991a,b) to take fully into account the elastic defor-
mations of the inner core and arrived at numerical results similar
to those of Rochester and Crossley (2009).

In Section 4, comparison will be made between the ICW eigen-
frequencies (1) and (3) and those provided by the numerical
resolution of the equations of conservation of linear momentum.

3. Linear momentum approach

The results presented in this paper are based on the theory of the
normal modes of a rotating self-gravitating elastic Earth model ini-
tially developed by Smith (1974) and its amendments by Schastok
(1997), Rogister (2001), Rogister (2003) and Huang et al. (2004). Of
course, the normal modes are the solutions of the local equation
of conservation of linear momentum where the external forces are
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