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a b s t r a c t

The geodynamo mechanism, responsible for sustaining Earth’s magnetic field, is believed to be strongly
influenced by the solid inner core through its influence on the structure of convection within the tangent
cylinder. In the rapidly rotating low-viscosity regime of the geodynamo equations relevant to the Earth’s
core, the magnetic field must satisfy a continuum of conditions known as Taylor’s constraint. Magnetic
fields that satisfy this constraint, termed Taylor states, have the property that their axial magnetic torque
vanishes when averaged over any geostrophic contour, cylinders of fluid coaxial with the rotational
axis. In recent theoretical developments, we proved that when adopting a truncated spherical harmonic
expansion, the continuous constraint in space reduced to a finite spectral set of conditions. Furthermore,
an expedient choice of regular radial basis presents an under-determined problem when constructing
Taylor states in a full-sphere showing the ubiquity of such solutions. A spherical-shell geometry, with
a conducting inner core, complicates the formulation of Taylor’s constraint due to the partitioning of
the geostrophic contours into three distinct regions, ostensibly trebling the stringency of the constraint.
This raises questions as to the admissible structures of such Taylor states, and their relation to those
in a full-sphere. In this paper, we address these issues in two stages. First, we present a mathematical
characterisation of the structure of Taylor’s constraint in a spherical-shell. We then enumerate the effec-
tive number of conditions that must be satisfied by any magnetic field that is everywhere C∞ inside the
core, and show that, assuming an equal truncation in radial and solid angle representation, the number
of conditions is approximately 5/3 times that for a full-sphere Taylor state. Second, we investigate the
influence of the inner core on the structure of admissible Taylor states by constructing a low-degree fam-
ily of optimally smooth observationally consistent examples in both a spherical-shell and a full-sphere.
We show that the introduction of an inner core into a full-sphere increases the minimum magnetic field
complexity, simply by virtue of the increased potency of Taylor’s constraint, a trait more pronounced in
our quasi-axisymmetric models. We speculate that axisymmetric dynamo-generated exact Taylor states,
particularly those generated in a spherical-shell, in general have small radial length scales that may be
difficult to resolve.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Earth’s magnetic field is generated in the fluid outer core by
convective flows that twist and stretch magnetic field lines, a pro-
cess that sustains the field against its natural tendency to decay.
Over the last few decades, with the advent of modern comput-
ing, huge leaps have been made in understanding the geodynamo,
although many questions are left unresolved. One fundamental
question is the role played by the solid inner core, particularly in
view of its poorly constrained age. The issue is that, on the one
hand, the existence of the inner core is believed necessary to pro-
duce the thermal and compositional buoyancy necessary to drive
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convection yet, on the other, thermal history models predict that,
of the more than 3 Ga history of the geodynamo, the inner core has
only existed for 1 Ga (Buffett, 2003). Aside from the source of con-
vection, there is much interest in the influence of the inner core
on the dynamics of the geodynamo, the outer core being split into
regions outside and inside the so-called tangent cylinder, an imag-
inary cylinder parallel to the rotation axis of the Earth and tangent
to the inner core. There is a growing body of evidence of strong
retrograde vortices inside the tangent cylinder from observations
(Hulot et al., 2002), laboratory experiments (Aurnou et al., 2003)
and geodynamo models (Sreenivasan and Jones, 2005), suggesting
the tangent cylinder marks a separation in the dynamics of the core.
Furthermore, the time taken for a magnetic field to diffuse into the
electrically conducting inner core is speculated to be enough to sta-
bilise the geodynamo and reduce the frequency of global reversals
(Gubbins, 1999; Hollerbach and Jones, 1993).
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Undoubtedly one of the most promising avenues with which
to explore the geodynamo is numerical simulations. However,
not only are these models difficult to analyse but, using present-
day algorithms and computing resources, they are confined to
parameters that are far from realistic (Kono and Roberts, 2002).
Of particular note is the Ekman number, a nondimensional mea-
sure of viscosity, believed to be O(10−15) in the core yet models
can only reach at most O(10−7) (Kageyama et al., 2008; Takahashi
et al., 2005, 2008). As well as increasing the role of viscous forces,
the associated inflation of the Rossby number, a measure of the
strength of inertia, by about 103 leads to solutions that operate in
a regime distinct from the Earth’s core (Christensen and Aubert,
2006; Sreenivasan and Jones, 2006). Despite these shortcomings,
geodynamo models have produced, with surprising success, mag-
netic fields characteristic of the Earth showing features such as
realistic field strengths, dipolar dominance and even global rever-
sals. However, few robust conclusions can be drawn due to the
strong dependence of model dynamics on the particular choice of
the controlling parameters. Even the most basic of properties, the
rotationally aligned dipolar structure, defies simple explanation as,
depending on the particular choice of parameters, equatorial dipole
structures can dominate, particularly for strongly driven convec-
tion (Aubert and Wicht, 2004).

The correct dynamics of the Earth’s core is described by the
magnetostrophic balance between buoyancy, pressure, Coriolis and
Lorentz forces (Fearn, 1998). In this regime, where viscosity and
inertia do not play a role, J.B. Taylor showed in 1963 that the mag-
netic field must satisfy a continua of conditions, namely that the
axial magnetic torque must average to zero over any geostrophic
contour, cylinders of fluid coaxial with the rotation axis. Denoting
the magnetic field as B, these constraints assume the form

T(s) ≡
∫

C(s)

([∇ × B] × B)�s d� dz = 0 (1)

where (s, �, z) are cylindrical coordinates and C(s) denotes a
geostrophic contour. In a full-sphere (with no inner core), these
contours form a single continuous family of cylinders parame-
terised by their radius s. However, in a spherical-shell the existence
of a solid inner core partitions contours inside the tangent cylinder
into two parts: those above and below the inner core. Thus there
are three sets of geostrophic contours rather than just one, defined
in regions I, II and III of Fig. 1(a); Fig. 1(b) shows example contours
for each of the three regions.

Progress in finding any examples of Taylor states, candidates
for the structure of the geomagnetic field, has been difficult. The

Earth’s internal field is believed to be one, although its structure
is hidden from view since the only observable is the radial com-
ponent of the field on the core–mantle boundary (CMB). Current
geodynamo models are not yet in an Earth-like parameter regime
and cannot produce Taylor states, although there is some evidence
that, by measuring the “Taylorisation” of the magnetic field, the cor-
rect regime is being approached (Rotvig and Jones, 2002; Takahashi
et al., 2005). Progress has been more straightforward when adopt-
ing axisymmetry, and several examples of Taylor states have been
found by solving the axisymmetric dynamo equations with small
Ekman number (Hollerbach and Ierley, 1991; Soward and Jones,
1983). However, since these are all specific cases, it has not been
possible to address the broader question of what, if anything, char-
acterises the internal structure of a Taylor state. Furthermore, in
view of simplicity these studies did not contain an inner core, leav-
ing open the question of what effect, if any, the change in geometry
to a more realistic spherical-shell has on the structure of solutions.
Indeed, the fact that Taylor’s constraint involves three continuums
of conditions rather than just one, leads to the expectation that the
class of admissible magnetic field solutions is significantly smaller
than that for a full-sphere. The purpose of this paper is to con-
front this issue head on, by providing an elementary mathematical
structure for Taylor’s constraint and the explicit construction and
comparison of exact spherical-shell with full-sphere Taylor states
within a certain well-defined class.

The foundation on which we build was laid down in Livermore et
al. (2008), and rests on looking for solutions of (1) in isolation. This
more abstract analysis removes the requirement that such mag-
netic fields are stable, or even time-averaged, solutions of the full
set of geodynamo equations in the Earth-like limit. To describe the
key result, let us first introduce some notation. We will write the
magnetic field in a truncated set of poloidal and toroidal vector
spherical harmonics,

B =
Lmax∑
l=1

l∑
m=0

Sm s/c
l

+ Tm s/c
l

(2)

where

Sm s/c
l

= ∇ × ∇ × [Ym s/c
l

(�, �) Sm s/c
l

(r) r̂],

Tm s/c
l

= ∇ × [Ym s/c
l

(�, �) Tm s/c
l

(r) r̂],

in spherical polar coordinates (r, �, �) and with r̂ denoting the unit
position vector. The notation Ym s/c

l
represents a spherical harmonic

of degree l, order m, and azimuthal dependence sin m� or cos m�
as appropriate; we adopt the usual Schmidt quasi-normalisation

Fig. 1. (a) The three regions in the fluid outer core in which the cylindrical contours, associated with Taylor’s constraint, are defined: outside the tangent cylinder (I), inside
the tangent cylinder and above (II) and below (III) the inner core. Dashed lines mark the tangent cylinder. (b) Illustrative cylinders over which Taylor’s constraint is defined.
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