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a b s t r a c t

In this paper, we combine theoretical and experimental approaches to study the tidal instability in plan-
etary liquid cores and stars. We demonstrate that numerous complex modes can be excited depending
on the relative values of the orbital angular velocity ˝orbit and of the spinning angular velocity ˝spin,
except in a stable range characterized by ˝spin/˝orbit ∈ [−1;1/3]. Even if the tidal deformation is small, its
subsequent instability – coming from a resonance process – may induce motions with large amplitude,
which play a fundamental role at the planetary scale. This general conclusion is illustrated in the case
of Jupiter’s moon Io by a coupled model of synchronization, demonstrating the importance of energy
dissipation by elliptical instability.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The fundamental role of tides in geo- and astrophysics has
been the subject of multiple studies for more than four cen-
turies. Beyond the well-known quasi-periodic flow of ocean water
on our shores, tides are also responsible for phenomena as var-
ied as the intense volcanism on Io or the synchronization of the
Moon on Earth. In stars and liquid planetary cores, tides may
also excite an hydrodynamic “elliptical” instability, whose conse-
quences are not yet fully understood. The purpose of the present
work is twofold: we shall first systematically characterize the
excited modes of the elliptical (or tidal) instability in a rotating
spheroid depending on its orbital and spinning velocities, and then
demonstrate the importance of this instability in stellar and plane-
tary binary systems using a simplified but illustrative model of tidal
synchronization.

The elliptical instability, whose existence is related to a paramet-
ric resonance of inertial waves, is well-known in aeronautics, and
more generally in the field of vortex dynamics: it actually affects any
rotating fluid, as soon as its streamlines are elliptically deformed.
Since its discovery in the mid-1970s, the elliptical instability has
received considerable attention, theoretically, experimentally and
numerically (see for instance the review by Kerswell, 2002). Its
presence in planetary and stellar systems, elliptically deformed by
gravitational tides, has been suggested for several years. It could
for instance be responsible for the surprising existence of a mag-
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netic field in Io (Kerswell and Malkus, 1998; Lacaze et al., 2006;
Herreman et al., 2009) and for fluctuations in the Earth’s magnetic
field on a typical timescale of 10,000 years (Aldridge et al., 1997).
It may also have a significant influence on the evolution of binary
stars (e.g. Rieutord, 2003).

In all these studies, it is assumed that the tidal deformation
is fixed and that the excited resonance is the so-called spin-over
mode, which corresponds to a solid body rotation around an axis
inclined compared to the spin axis of the system. This is indeed
the only perfect resonance in spherical geometry in the absence
of rotation of the elliptical deformation (Lacaze et al., 2004). But
in all natural configurations such as binary stars, moon–planet sys-
tems or planet–star systems, orbital motions are also present, which
means that the gravitational interaction responsible for the tidal
deformation is rotating with an angular velocity and/or a direction
different from the spin of the considered body. This significantly
changes the conditions for resonance and the mode selection pro-
cess, as recently demonstrated in the cylindrical geometry (Le Bars
et al., 2007).

The paper is organized as follow. In Section 2, in complement
to the trends presented in Le Bars et al. (2007), we systemati-
cally characterize the excited modes of the elliptical instability in
a rotating spheroid depending on its orbital and spinning veloci-
ties, using both theoretical and experimental approaches. We then
describe in Section 3 a fully coupled simplified model of synchro-
nization of stellar and planetary binary systems, demonstrating
the importance of energy dissipation by elliptical instability. In the
last section, the main results of the paper are summarized and
general conclusions for geo- and astrophysical systems are briefly
discussed.
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Fig. 1. (a) Sketch of the experimental set-up and (b) correspondence with the geophysical configuration (top view).

2. Excited modes of the elliptical instability in an orbiting
spinning spheroid

Our study is based on the laboratory experiment shown in
Fig. 1(a). The set-up consists in a deformable and transparent hollow
sphere of radius R = 2.175 cm, set in rotation about its axis (Oz) with
an angular velocity ˝F up to ±300 rpm, simultaneously deformed
elliptically by two fixed rollers parallel to (Oz). The container is
filled with water seeded with anisotropic particles (Kalliroscope).
For visualization, a light sheet is formed in a plane coinciding with
the rotation axis, allowing the measurement of wavelengths and
frequencies of excited modes. The whole set-up is placed on a
0.5 m-diameter rotating table allowing rotation with an angular
velocity ˝orbit up to 60 rpm. Such a system is fully defined by three
dimensionless numbers: ε, the eccentricity of the tidal deformation,
˝ = ˝orbit/˝F, the ratio between the orbital and the fluid angu-
lar velocities, and E = �/˝F R2, an Ekman number, where � is the
kinematic viscosity of the fluid. In geo- and astrophysical terms,
this toy model mimics a tidally deformed fluid body spinning at
˝spin = ˝F + ˝orbit with a tidal deformation rotating at the orbital
velocity ˝orbit (see Fig. 1(b)). Note that in natural configurations, the
gravitational interactions responsible for the boundary deforma-
tion of the considered planet or star also act over the whole depth
of the system. This feature cannot be taken into account in our toy
model. However, it touches another side of the problem, namely
the role of compressibility and stratification which we leave for
subsequent studies. We focus here on incompressible effects only,
considering a fluid of uniform density.

2.1. Linear global analysis

As previously mentioned, the elliptical instability is generated by
the parametric resonance of two normal modes of the undistorted
circular flow with the underlying strain field (e.g. Waleffe, 1990;
Kerswell, 2002). We have thus performed a so-called “global” anal-
ysis of the instability, which consists in (i) determining the normal
modes of the sphere, (ii) calculating explicitly the conditions for res-
onance, which immediately provides information on the structure
of the selected instability and (iii) determining the growth rate of
this instability. In the following, we work in the frame rotating with
the rotating table (i.e. in the frame where the elliptical deformation
is stationary), and variables are nondimensionalized using the char-
acteristic lengthscale R and the characteristic timescale 1/˝F (i.e.
the relevant timescale for the elliptical instability, corresponding to
the rotation of the fluid compared to the elliptical deformation).

As explained in Le Bars et al. (2007), inviscid normal modes in
a rotating container submitted to a global rotation ˝ are related
to inviscid normal modes without global rotation through the rela-
tion:

{u, p}(ω, ˝, m, l) =
{

u
1 + ˝

, p
}

(ω̃, 0, m, l) (1)

where u and p stand for the velocity and the pressure, respec-
tively. Here, ω is the mode frequency in the frame rotating with
the elliptical deformation, ω̃ = (ω + m˝)/(1 + ˝), and m and l
are azimuthal and “meridional” wavenumbers respectively (see
Lacaze et al., 2004, for details). Due to this property, the dis-
persion relation solutions in the sphere with global rotation are
the same as the ones given by Lacaze et al. (2004) without
global rotation when ω is replaced by ω̃. The linear analysis
of the elliptical instability in the rotating frame can thus be
expressed from the results obtained without global rotation. The
condition for resonance between two waves is simply given by
(m2,ω2) = (m1 + 2,ω1), and the corresponding excited resonance is
labeled by (m1,m2). Note that as frequencies of normal modes are
confined to the interval m − 2 < ω̃ < m + 2, resonances are only
possible for ˝ outside the range [−3/2;−1/2]. There, the growth
rate �1 = �/ε is solution of the equation (see again Lacaze et al., 2004,
for details):(
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= (Ñ1|2 − (1 + ˝)Ĩ1)(Ñ2|1 − (1 + ˝)Ĩ2), (2)

where J̃i|i corresponds to the norm of mode i, Ñi|j to the cou-
pling coefficient between modes i and j, �i

s to the viscous damping
induced by the no-slip boundary condition on each mode derived
from the work of Kudlick (1966),1 Ĩi to surface effect induced by
the elliptic shape of the boundary and C̃i|i to the possible detuning
of the instability when ˝ is slightly off the perfect resonance con-
dition. The exact expressions of all these coefficients are given in
Appendix A.

Numerical resolution of Eq. (2) determines the growth rate of
any given resonance depending on the dimensionless parameters
(ε,˝,E). Our computations demonstrate that only principal reso-

1 Note that only boundary layer effects are considered here, and that damping
due to inner shear layers are neglected. This assumption has been fully justified by
numerical computation for the spin-over mode (Hollerbach and Kerswell, 1995), and
is supposed to remain valid here.
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