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a b s t r a c t

The parallelized three-dimensional spherical convection code, TERRA, is employed to study the mean
temperatures and planforms of convecting planetary mantles in spherical shell geometries. We vary the
factor f which controls the degree of curvature, defined as the ratio of the radii of the inner and outer
bounding surfaces, the Bénard-Rayleigh number, RaB, and the dimensionless rate of internal heating, H.
We develop parameterized expressions for predicting the mean temperature of convecting spherical shells
which are heated partially from within and partially from below by a hot isothermal lower boundary.
Our parameterization is fit to a data set of mean temperatures from 23 numerical model calculations
for f = 0.547 (appropriate to Earth’s mantle). We then demonstrate that this parameterization of mean
temperature in terms of f, RaB and H extends to other values of f as well. For all values of f, RaB and H
considered in this study, our predicted mean temperatures agree with the model calculations to within
2.4%. The scaling analysis is extended to obtain an expression for surface heat flux in terms of RaB and H
for f = 0.547. In that case we obtain a predictive equation for surface heat flux that agrees to within 11%
of the observed values. Our findings provide a useful tool for parameterizing the temperature and surface
heat flux of planetary mantles of varying geometry and heating configurations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Some knowledge of the composition, thickness and heating
rate of a terrestrial planet’s mantle is required for even the most
rudimentary model of its thermal structure. The possibilities for
these fundamental parameters allows for a diverse range of thermal
states, even in a simple medium featuring uniform properties and
boundary conditions (Bercovici et al., 1989; Schubert et al., 1993).
Previous studies of uniform property fluids have shown that despite
the apparent complexity of the obtainable convective planforms,
simple predictive equations can be derived for bulk characteristics
such as the mean temperature; both in plane layer systems, fea-
turing heating from within and below (Sotin and Labrosse, 1999),
and axi-symmetric spherical shell systems, featuring heating by an
isothermal core (Vangelov and Jarvis, 1994). The findings of these
studies have been extended to derive theoretical but untested pre-
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dictive equations for the mean temperature of an infinite Prandtl
number, uniform property, convecting fluid in a random thickness
spherical shell heated by both internal sources and an isothermal
core (Sotin and Labrosse, 1999). The goal of the study presented
here is to test and refine these equations to provide a validated
parameterization for predicting mean temperatures.

Studies (Jarvis et al., 1995) of solely bottom heated fluid spheri-
cal shells have shown that the number of convection cells and the
time dependence of the flow is dependent on the ratio, f, of the
inner and outer shell radii. Convection planform and time depen-
dence are also dependent on the rate of internal heating, H, and
the Bénard-Rayleigh number, RaB, of the system (a measure of the
vigour of the flow driven by bottom heating). Because convection
cell planform also affects mean temperature (Jarvis et al., 1995) it is
not obvious that a simple relation between the parameters, H and
RaB, and the global temperature should be obtainable.

We obtain numerical solutions for the temperature fields in iso-
viscous spherical shell models of planetary mantles heated by an
isothermal boundary condition at the core and by uniformly dis-
tributed internal sources. The models are cooled from above by an
isothermal surface. The specification of an isothermal condition at
the core assumes that the planet has a liquid core (or outer core)
and is therefore able to mix on much more rapid timescales than
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the mantle. We consider a range of model geometries (determined
by the ratio of the inner radius to the outer radius of the spherical
shell, f, the curvature factor) but initially focus on models that fea-
ture the Earth’s curvature factor, f = 0.547. We compare our results
in this fixed geometry to previous findings in a Cartesian geometry
(f = 1) in order to refine previously proposed equations for a gen-
eralized curvature factor. In addition to working towards a single
equation for predicting the global thermal characteristics of a plan-
etary mantle with arbitrary f and heating mode, we examine the
effect of these parameters in causing transitions in the convective
planform of the systems.

2. Modelling method

We model infinite Prandtl number convection in a spherical
shell with radially inward directed gravity using the parallelized
code TERRA (Bunge and Baumgardner, 1995; Bunge et al., 1996,
1997; Phillips and Bunge, 2005). In order to compare our findings
with the most relevant previous studies (e.g., Sotin and Labrosse,
1999) we employ the Boussinesq approximation and suppress the
effects of compressibility. We focus on isoviscous convection heated
by both core heat loss and internal mantle heat sources. The rate
of internal heating is constant in time. Isothermal boundary con-
ditions are specified at the inner shell radius, Ri, and outer shell
radius, Ro. The temperature difference across the shell thickness,
d = Ro − Ri, is �T . The vigour of convection driven by the temper-
ature difference of the bounding surfaces of the spherical shell can
be measured by the Bénard-Rayleigh number:

RaB = g˛�Td3

��
, (1)

where g is the gravitational acceleration, ˛ is the thermal expan-
sivity, � is the thermal diffusivity and � is the kinematic viscosity.

Typical values of the parameters defining RaB indicate that the
mantles of Earth and other terrestrial planets are characterised by
Bénard-Rayleigh numbers that are well above the critical value
(McKenzie et al., 1974; Schubert et al., 2001). However, the source
of most of the heat flux from Earth’s mantle is the concentration of
radiogenic elements in the mantle (Schubert et al., 1980). Signifi-
cant heating in other planets with a similar make-up to the Earth
likely also comes from internal mantle heat sources. The vigour of
convection driven by internal sources can be specified in terms of
an internal heating Rayleigh number:

RaH = g˛�d5

�k�
, (2)

where k is the thermal conductivity and � is the rate of internal
heat generation per unit volume (Roberts, 1967).

We non-dimensionalise the system of equations governing
convection in the spherical shell in terms of the diffusion time
across the shell thickness, so that dimensional times are recovered
from non-dimensional times by multiplying by d2/�. In its non-
dimensional form the equation for the conservation of heat in the
system described is thus

∂T

∂t
= ∇2T − v · ∇T + RaH

RaB
, (3)

where T is the non-dimensional temperature, t is the non-
dimensional time and v is the non-dimensional velocity. RaH/RaB
is equivalent to the non-dimensional internal heating rate, H.

The equations describing the conservation of mass and momen-
tum as well as the standard linearised equation of state complete
the system of equations describing flow evolution in the fluid
modelled. Adopting the non-dimensionalisation of time described

above, these equations take the form

∇ · v = 0, (4)

∇2v − ∇P = RaBT ẑ, (5)

and

� = �0[1 − ˛T], (6)

respectively, where ẑ is a unit vector parallel to the direction of
gravitational acceleration, P is the non-dimensional pressure and
�0 is the density at the surface of the spherical shell which has a
non-dimensional temperature of zero. RaB and H are thus the sole
fluid parameters governing the solution of the system. (Note that
f is an independent geometric parameter which also governs the
evolution of the system.)

We solve the continuity and momentum equations specifying
free-slip surfaces at Ri and Ro. The radial and lateral resolution of the
numerical mesh employed in each of the calculations performed are
adjusted according to the value of the specified Bénard-Rayleigh
number.

The combinations of Rayleigh number, RaB, internal heating rate,
H, and curvature factor, f, for all of the cases examined in this study,
result in time-dependent convection. The mean temperatures and
heat fluxes that we quote in the following sections are therefore
temporal averages determined once each model has reached a sta-
tistically steady state. We consider the solution to have reached
such a condition once the mean temperature of the system is no
longer showing any clear long-term heating or cooling trends. The
average values that we quote, along with the standard deviation of
the time series, are obtained over multiple mantle overturn times
once a steady condition has been attained. The initial conditions
for our solutions are specified as mildly perturbed fields featuring
steep temperature gradients at the solution domain boundaries and
isothermal regions between the boundary regions. The tempera-
ture of the isothermal bulk of the fluid is adjusted at the start of
each model run in accord with the heating rate of the calculation.
We specify higher initial mean temperatures for calculations with
relatively high internal heating rates. As a result, collectively, the
calculations heated or cooled to their statistically steady state much
more quickly than they would have if we have used the same initial
condition for all cases.

3. Results

We initially present results from 23 numerical models with
a fixed ratio, f, of Ri/Ro = 0.547 (the ratio of the Earth’s outer
core radius to its mean surface radius). For this geometry, we
examine the thermal characteristics in calculations featuring
Bénard-Rayleigh numbers ranging from 104 to 107 and H between
2.353 and 47.064. (The upper value of this range for H is approx-
imately twice estimates of the effective current rate of heating in
the Earth’s mantle that results from internal sources and secular
cooling (Schubert et al., 2001). In combination, these heat sources,
which mimic each other (Krishnamurti, 1968; Weinstein and Olson,
1990), may supply about 0.8 of the Earth’s mean surface heat flux.)
The non-dimensional heating rate, H, is dependent on d2; conse-
quently, modelling planets with shallower mantles than the Earth
requires specifying lower values for H as well as RaB. We model
planets with low values of RaB and H for an Earth-like value of f
in order to obtain thorough coverage of Ra − H parameter space.
Table 1 summarizes the heating mode specification, grid resolution
and non-dimensional mean temperature, �, of each model solution.
(Other columns of data appearing in the table are discussed in later
sections). Table 1 also introduces a naming convention for our mod-
els that is based on the Rayleigh number and a multiplicative factor
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