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a b s t r a c t

It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003.
Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607;
Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially
molten rocks: effects of stress and strain. J. Petrol. 48, 2379–2406] that when partially molten rock is
subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction
of instantaneous maximum extension. These have been modeled numerically and it has been speculated
that high porosity bands may form an interconnected network with a bulk, effective permeability that
is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt
towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of
melt and shear localization in partially molten aggregates. Nature 442, 676–679]. In this contribution,
we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear
theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analy-
sis. J. Fluid Mech. 247, 17–38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple
shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz,
R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten
aggregates. Nature 442, 676–679] is generalized to include both the effects of buoyancy and matrix shear
on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are
compared with the early time evolution of our 2D numerical model and they are found to be in excellent
agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater
than matrix shear-induced forces. The results of the numerical model indicate that bands form when
buoyancy forces are large and that these can significantly alter the direction of the flow of liquid away
from vertical. The bands form at angles similar to the angle of maximum instantaneous growth rate. Con-
sequently, for strongly strain-rate dependent rheology, there may be two sets of bands formed that are
symmetric about the direction of maximum compressive stress in the background mantle flow. This sec-
ond set of bands would reduce the efficiency with which melt bands would focus melts towards the ridge
axis.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Holtzman et al. (2003) and Holtzman and Kohlstedt (2007)
presented experiments in which partially molten ductile rocks
were subjected to deformation approximating simple shear. It was
found that if the size of the sample was similar to or greater than
the compaction length, high porosity bands would spontaneously
form at angles of roughly 20◦ to the shear plane. If a sample of
a partially molten material is larger than its compaction length, a
significant degree of matrix deformation will take place if the sam-
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ple is subjected to an applied stress (McKenzie, 1984). Stevenson
(1989) had shown theoretically that partially molten materials
should spontaneously segregate into high and low porosity regions
provided that the viscosity of the solid matrix is a decreasing func-
tion of porosity when the matrix is subjected to pure shear. The
formation of bands, perpendicular to the direction of maximum
extension, in simulations of shear flow in strain independent but
porosity weakening rheology, was demonstrated by Richardson
(1998). Richardson (1998) also included the effects of buoyancy
and showed that veins formed when buoyancy was active and that
background shear resulted in the elongation in the direction of
maximum compressive stress of a rising porosity solitary wave.
Spiegelman (2003) and Katz et al. (2006) showed using linear the-
ory and numerical simulations that such bands will grow and that
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the angle at which the bands grow fastest is a function of the strain-
rate dependence of the viscosity of the matrix. They found that if
the exponent relating the viscosity to the strain rate is roughly four
or greater, that the melt bands form at low angles similar to the
ones seen in the experiments.

Melting is believed to occur in roughly the top 60 km in the
upwelling region below the ridge axis (Hess, 1992). The lateral
extent of melting is believed to be roughly 100 km (Forsyth et al.,
1998) while melts are mostly extracted within 1 km of the ridge

axis (Vera et al., 1990). A number of mechanisms have been
proposed to explain the focusing of mantle melt towards the
ridge axis. These include the stresses imparted on the intersti-
tial fluid by the background circulation of the solid mantle matrix
(Morgan, 1987; Spiegelman and McKenzie, 1987), a decompaction
channel beneath the near surface mantle solidus (Sparks and
Parmentier, 1991) and anisotropic permeability induced by the
strain due to the mantle circulation (Morgan, 1987). Katz et al.
(2006) noted that if melt bands form in the mantle below mid-
ocean ridges and they are rotated by 25◦ from the direction of
maximum compressive stress, as they are in the experiments and
in the numerical simulations with highly strain-rate dependent
viscosity, that they could act as a network of interconnecting
high permeability pathways channeling melt towards the ridge
axis.

One effect of buoyancy on a compacting porous medium is to
induce oscillations and waves (e.g., Scott and Stevenson, 1986;
Spiegelman, 1993). Where buoyancy-driven flow encounters a
region of reduced permeability, fluid will build up leading to an
increase in the porosity and permeability. As a result, more fluid
will be drawn into this region, decreasing the porosity and per-
meability in the surrounding regions and resulting in propagating
regions of increased and reduced porosity and permeability. It is
the main purpose of this paper to investigate the interaction of this
effect with strain-induced porosity localization. In agreement with
Richardson (1998) we will show that bands can form in the pres-
ence of buoyancy and we will demonstrate that their growth rate
is not affected by the degree of buoyancy. We will also show that
strain-induced melt bands can channel flow in directions away from
vertical. However, for highly strain-rate dependent viscosity there
may be two different orientations of melt bands.

In what follows, the governing equations for the numerical simu-
lations will first be presented. We will then present the linear theory
of a compacting porous layer under the influence of an externally
imposed simple shear and buoyancy when the matrix viscosity can
be strain-rate dependent in Section 3 and we will compare some
predictions of linear theory with the numerical model results. In
Section 4, the results of numerical simulations with various degrees
of strain-rate dependence of viscosity and buoyancy driven flow
will be presented. Section 5 contains some interpretation and dis-
cussion of our results.

2. Governing equations

We solve the dimensionless equations appropriate for a com-
pacting porous layer (e.g., McKenzie, 1984; Scott and Stevenson,
1984) in two space dimensions, x and y in a square domain of side

length two compaction lengths centered on the origin. We impose
a background, simple-shear, velocity of the solid matrix and fluid of
the form U0 = y sin(�), V0 = x cos(�). Here � can either be 0 or �/2
corresponding to shear in the vertical and horizontal directions.
Our methodology can be easily generalized to other background
flow geometries.

The dimensionless equations for the force balance of the fluid
phase and for the solid matrix are

�(u − U) = −k�(∇p − (1 − �0)Buĵ) (1)
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While equations indicating that the combined fluid and solid are
incompressible and a mass conservation equation for the solid can
be written

∇ · [u� + U(1 − �)] = 0 (3)

and

∂�

∂t
= ∇ · [(U + y sin(�)î + x cos(�)ĵ)(1 − �)]. (4)

Here u and U = [U, V ] represent velocity variations from the back-
ground flow for the fluid and solid phases, and p and � are the
transformed fluid pressure (see below) and the porosity while î
and ĵ are unit vectors in the horizontal and vertical directions. The
equations are made dimensionless using scales for length, pres-
sure, velocity and viscosity of ıc , �̇(�0 + 4/3�0), �̇ıc and �0 where
ıc is the compaction length, �̇ is the strain rate corresponding
to the background velocity and �0 and �0 are the dimensional
bulk and shear viscosity of the matrix at the initial porosity and
background strain. The parameters � and � represent the dimen-
sionless bulk and shear viscosities. The compaction length is given
by ıc = (k0(�0 + 4/3�0)/	)0.5 where k0 is the permeability at the
initial porosity, and 	 is the liquid viscosity. Both � and 	 are
assumed to be constant. Katz et al. (2006) reported simulations
with and without a porosity dependence of the bulk viscosity and
found very little resulting differences.

The transformed pressure, p, is related to the fluid pressure,
pfluid, by p = pfluid + [(1 − �0)
s + �0
l]Buy where 
s and 
l are the
dimensional solid and fluid densities divided by the difference
between the solid and fluid densities and �0 is the initial back-
ground porosity. The dimensionless parameter Bu is defined in the
following section. The pressure is transformed in this way so that
the mean difference in p between the top and bottom boundaries
is 0. This allows us to use periodic vertical boundary conditions.

The shear viscosity of the matrix is taken to weaken with poros-
ity (Mei et al., 2002) and strain rate (Karato and Wu, 1993) according
to
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The parameter ˛ is taken to be −25 (Mei et al., 2002) while the factor
of

√
2 causes the dimensionless viscosity to be 1 when the veloc-

ity of the solid is equal to the background value. The value of the
strain-rate exponent, nv, is varied from one simulation to another
from a minimum value of 1 (strain-rate-independent viscosity) to
a maximum value of 6. Recently, Korenaga and Karato (2008) have
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