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a b s t r a c t

A data space Occam’s inversion algorithm for 2D DC resistivity data has been developed to seek the
smoothest structure subject to an appropriate fit to the data. For traditional model space Gauss–Newton
(GN) type inversion, the system of equations has the dimensions of M × M, where M is the number of model
parameter, resulting in extensive computing time and memory storage. However, the system of equations
can be mathematically transformed to the data space, resulting in a dramatic drop in its dimensions to
N × N, where N is the number of data parameter, which is usually less than M. The transformation has
helped to significantly reduce both computing time and memory storage. Numerical experiments with
synthetic data and field data show that applying the data space technique to 2D DC resistivity data for
various configurations is robust and accurate when compared with the results from the model space
method and the commercial software RES2DINV.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The direct current (DC) resistivity method has been used for
various applications in hydrogeological, mining, and geotechni-
cal investigations and environmental surveys (e.g., Ward, 1990;
Daily et al., 1992, 1995; Ramirez et al., 1993, 1996; LaBrecque and
Ward, 1990; among many others). The measured voltages caused
by injected current bring out information on the earth’s structure.
The inversion program is then applied to interpret the measured
voltages to obtain the Earth’s resistivity structure.

The development of DC resistivity inversions has progressed
successfully. Various techniques have been proposed for the
two-dimensional (2D) and three-dimensional (3D) DC resistivity
inversion (e.g., Pelton et al., 1978; Tripp et al., 1984; Nariida and
Vozoff, 1984; Tong and Yang, 1990; Park and Van, 1991; Ellis and
Oldenburg, 1994; Li and Oldenburg, 1994; Sasaki, 1994; Loke and
Barker, 1995; Zhang et al., 1995; Loke and Dahlin, 1997, 2002;
Tsourlos et al., 1998; Jackson et al., 2001; Pain et al., 2002; Loke
et al., 2003; Günther et al., 2006; Pidlisecky et al., 2007; among
many others). The most direct approach is the Gauss–Newton
(GN) and its variant methods (e.g., Sasaki, 1994; Li and Oldenburg,
1994; Loke and Dahlin, 1997). Other limited memory optimiza-
tion algorithms are the Quasi-Newton (QN) method (Loke and
Barker, 1996; Loke and Dahlin, 1997, 2002; Tsourlos et al., 1998),
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the conjugate gradient (CG) type inversion (Zhang et al., 1995)
and the non-linear conjugate gradient (NLCG) (Ellis and Oldenburg,
1994). These are the schemes that require the gradient of the func-
tion. The derivative-free methods are neural networks (El-Qady
and Ushijima, 2001) and genetic algorithms (Schwarzbach et al.,
2005).

One of the main disadvantages of the GN-type inversion is that
it requires solving a large and dense M × M system of equations,
where M is the number of model parameters. Another disadvan-
tage is the formation of the full N × M Jacobian or sensitivity matrix.
Calculation of the full Jacobian requires a numerical solution of
many forward problems. Both disadvantages, consequently, result
in extensive computing time and memory storage. For example,
in the 3D inversion, the synthetic model of a burial mound and
data used by Günther et al. (2006) has 23,109 parameter cells
(M = 23,109) which is a lot more than the number of data param-
eters (N = 3439). Inverting the 23,109 × 23,109 matrix and forming
the Jacobian would require about 4–5 GBytes of RAM and many
hours of CPU time.

The problem for the 3D DC resistivity inversion is quite sim-
ilar to (though not as severe as) that for the 3D magnetotelluric
(MT) survey, where the model parameter (M) is significantly greater
than the data parameter (N). Siripunvaraporn and Egbert (2000)
and Siripunvaraporn et al. (2005) could overcome this difficulty by
transforming the model space inverse problem into the data space
problem for their 2D and 3D Magnetotelluric data, respectively.
With the transformation, the computational time and memory stor-
age are greatly reduced by a factor of several (Siripunvaraporn and
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Egbert, 2000; Siripunvaraporn et al., 2005). However, formation of
the Jacobian matrix is still a requirement.

For the limited memory optimization schemes such as QN,
the full Jacobian or sensitivity matrix and the large and dense
coefficient matrix of the system of equations are not necessar-
ily constructed. Instead, a multiplication of the Jacobian with any
vector can be calculated by solving the forward problem. These
methods therefore never require a large memory storage as in GN-
type inversions. Another advantage of QN-type inversions over the
model space GN-type is their speed. However, their stability may be
questionable (Loke and Dahlin, 2002). Though GN-type inversions
may use extensive computing time, their main advantages are sta-
bility and robustness. They require fewer iterations to converge to
the solution than limited memory methods (Loke and Dahlin, 2002;
Siripunvaraporn and Egbert, 2007).

Because of their stability, we still have confidence in GN-type
inversion techniques, especially Occam’s method as first intro-
duced by Constable et al. (1987). Siripunvaraporn and Egbert (2007)
showed that for 2D MT data, the computing time of a GN-type
inversion in the data space is actually comparable to that of the
CG or NLCG inversion. For all of these reasons, here we propose to
solve the multi-dimensional DC resistivity inverse problem using
one variant GN-technique, Occam’s inversion. However, instead of
solving the problem in model space as others have (e.g., Constable
et al., 1987; Sasaki, 1994), we propose to solve the DC resistivity
inverse problem in data space as in Siripunvaraporn and Egbert
(2000) and Siripunvaraporn et al. (2004, 2005). In order to test the
feasibility and practicality of the data space approach for 3D DC
resistivity data, we developed the 2D DC resistivity inversion based
on the data space approach of Siripunvaraporn et al. (2005), which
will be extended to 3D in the future.

We first start the paper by briefly reviewing the basic idea of
Occam’s inversion in the usual model space formulation, and then
from a data space perspective. We then describe the implemen-
tation of the data space technique to a 2D DC resistivity data set.
Numerical experiments of both synthetic and real field data in com-
parison with the commercial software RES2DINV version 3.55 (Loke
and Barker, 1996) are shown at the end.

2. Occam’s inversion: model space approach versus data
space approach

Constable et al. (1987) introduced the Occam method for 1D
MT and Schlumberger sounding data. Since then it has become one
of the “classic” inversion techniques for various geophysical data
(e.g., deGroot-Hedlin and Constable, 1990, 2004; deGroot-Hedlin,
1995; LaBrecque et al., 1996; Siripunvaraporn and Egbert, 2000;
Huang et al., 2003; Siripunvaraporn et al., 2005; Greenhalgh et al.,
2006; among others). For more general and detailed discussions of
the Occam approach, see Constable et al. (1987), deGroot-Hedlin
and Constable (1990), Siripunvaraporn and Egbert (2000) and
Siripunvaraporn et al. (2004, 2005).

The philosophy of the Occam approach is to seek for the
“smoothest” or “minimum” structure model subject to a constraint
on the misfit (Constable et al., 1987), which can be mathemati-
cally translated into a problem of minimization of an unconstrained
functional U(m, �),

U(m, �) = (m − m0)TC−1
m (m − m0)

+ �−1{(d − F[m])TC−1
d (d − F[m]) − X∗2}. (1)

Here m is a resistivity or conductivity model of dimension M, m0 a
base or prior model, Cm a model covariance matrix which defines
the model norm, d the observed data with dimension N, F[m] the
forward model response, Cd a data covariance matrix, X* the desired

level of misfit, and �−1 a Lagrange multiplier. In the 2D DC resis-
tivity case, the data d are the apparent resistivities from different
configurations. The model response F[m] is computed by solving
the DC resistivity forward problem, which we will describe later.

Instead of directly minimizing (1), Constable et al. (1987) con-
sider the penalty functional W�(m),

W�(m) = (m − m0)TC−1
m (m − m0)

+ �−1{(d − F[m])TC−1
d (d − F[m])}. (2)

When � is fixed, ∂U/∂m and ∂W�/∂m yield the same result. There-
fore, minimizing W� with a series of � values, and choosing � for
which the smallest minimum is achieved, is equivalent to minimiz-
ing the original functional U of (1).

Because of the non-linearity of the inverse problem,
the Occam’s inversion starts with the linearization of the
response function F[m] based on the Taylor series expansion,
F[mk+1] = F[mk] + Jk(mk+1 − mk). Inserting the series expansion in
(2), and then solving for the stationary points, a series of iterative
approximate solutions is then obtained,

mk+1(�) − m0 = [�C−1
m + JT

kC−1
d Jk]

−1
JT
kC−1

d
–dk, (3)

where –d = d − F[mk] + Jk(mk − m0), the subscript k denotes the iter-
ation number, and Jk = (∂F/∂m)k is the N × M sensitivity or Jacobian
matrix calculated at mk. Note that the system of Eq. (3) has dimen-
sions of M × M. We therefore called this technique the “model
space” Occam’s inversion.

Parker (1994) showed that the solution to (3) for iteration k can
be transformed to

mk+1 − m0 = CmJT
k�k+1, (4)

where �k+1 is an unknown expansion coefficient vector. The deriva-
tion of (4) from (3) is also given in Siripunvaraporn et al. (2005).
Searching for the stationary points with the transformation (4), a
series of iterative solutions is again obtained,

�k+1 = [�Cd + JkCmJT
k]

−1 –dk. (5)

Note that the system of Eq. (5) has dimensions N × N, rather
than M × M as in (3). Here is the main difference between (3) and
(5). Because we transform the computation from model space to
data space, we therefore called this technique after the transforma-
tion the “data space” Occam’s inversion. If all the same parameters
are used the solutions from both approaches will be identical
(Siripunvaraporn and Egbert, 2000; Siripunvaraporn et al., 2005).
For MT data, the number of model parameters M is usually much
larger than the number of data values N. Both the calculation time
and memory are significantly decreased with the transformation
to data space (Siripunvaraporn and Egbert, 2000; Siripunvaraporn
et al., 2005). Here, we apply this method to DC resistivity data and
we expect to gain the same benefits.

The beauty of Occam’s inversion is here, which makes it different
from other regularized inverse problems. In either the model space
or data space approach, the goal is to search for the minimization
of (1). This can be performed by two stages. The first stage (Phase
I) is to bring the misfit down to the target level by varying � values
in (3) and (5) for each iteration. Once the target misfit is achieved,
Phase II keeps the misfit at the desired level and searches for the
minimum norm model by again varying � values in each iteration.
The addition of Phase II is to guarantee that the model structure
does not contain unwanted or spurious structures (Siripunvaraporn
et al., 2004, 2005).
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