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Inherent spatial variability (ISV) of design soil properties (e.g., effective friction angle ¢’) can be incorporated into
probability-based geotechnical analyses and designs using random field models. Defining a random field model
includes determination of random field parameters (i.e., mean g, standard deviation o, and scale of fluctuation A)
and the correlation function that specifies the spatial correlation of the concerned design soil property (e.g., ¢’) at
different locations. This is, however, a challenging task at a given site due to a lack of direct test data of design soil
properties and various uncertainties (e.g., transformation uncertainty) arising during site investigation. This
paper develops Bayesian approaches for probabilistic characterization of the ISV of ¢’ using indirect test data
(i.e., cone penetration test (CPT) data) and prior knowledge, which identify random field parameters of ¢’
through Markov Chain Monte Carlo Simulation (MCMCS) and, simultaneously, make use of Gaussian copula to
select the most probable correlation function M* among a pool of candidate correlation functions based on
MCMCS samples. The proposed Bayesian approaches account, rationally and transparently, for the transforma-
tion uncertainty associated with the transformation model between ¢’ and CPT data. The proposed approaches
are illustrated and validated using real-life and simulated CPT data. Results show that the proposed approaches
properly identify the random field model (including g, , A, and M") of ¢’ using project-specific CPT data, and the
random field parameters of ¢’ depend on the correlation function used to interpret CPT data. In addition, the suit-
ability of MCMCS in Bayesian probabilistic characterization of soil properties is highlighted, particularly for the

cases with a limited number of test data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Inherent spatial variability (ISV) of soils is one of major sources of
uncertainties in soil properties (e.g., Phoon and Kulhawy, 1999a;
Baecher and Christian, 2003; Wang et al., 2016). It can be incorporated
into probability-based geotechnical analyses and designs through ran-
dom field theory (e.g., Fenton and Griffiths, 2008; Vanmarcke, 2010;
Gong et al.,, 2014; Jamshidi Chenari and Alaie, 2015; Li et al., 2015a,
20164, 2016b). A random field model probabilistically characterizes
the ISV through a set of random field parameters (i.e., mean , standard
deviation o, and scale of fluctuation A) and a correlation function (such
as those shown in Fig. 1) (e.g., Fenton, 1999; Fenton and Griffiths, 2008;
Lloret-Cabot et al., 2014; Kasama and Whittle, 2016). Determining the
random field parameters and the correlation function of design soil
properties, which are directly used in geotechnical designs
(e.g., effective friction angle ¢’), at a site is, therefore, a necessary
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prerequisite for probabilistic characterization of ISV of soil properties
at the site. This is, however, a challenging task in geotechnical practice.

Consider, for example, probabilistic characterization of the ISV of the
effective friction angle ¢'. Values of ¢’ in a soil layer can be directly mea-
sured from laboratory tests (e.g., triaxial tests) on soil samples retrieved
from boreholes in a discrete manner. The number of direct measure-
ments of ¢’ in a soil layer is usually too sparse to generate meaningful
statistics and correlation function because a large number of laboratory
tests are costly. On the other hand, ¢’ can be indirectly estimated using
fast and economical in-situ tests (e.g., cone penetration test (CPT))
through transformation models (e.g., the empirical regression between
normalized cone tip resistance q from CPT and ¢’, as shown in Fig. 2).
The transformation model is not a perfect relationship but is associated
with uncertainties/dispersion about a mean trend, namely “transforma-
tion uncertainty” (e.g., Phoon and Kulhawy, 1999b), which shall be ra-
tionally considered when using indirect test data (e.g., CPT data) to
characterize the ISV of ¢'. This can be formulated as an inverse analysis
problem under a Bayesian framework (Wang et al., 2016).

Wang et al. (2010) and Cao and Wang (2013) proposed Bayesian ap-
proaches to inversely infer the random field model parameters (i.e., 1, o,
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Single Exponential Correlation Function (SECF)
Mi: p(AD) = exp(-2|AD|/2 )
o Binary Noise Correlation Function (BNCF)
Ma: p(AD) =1 - |AD|/A (|AD| £ 2), otherwise p(AD) = 0
—2&— Second-Order Markov Correlation Function (SMCF)
Ms: p(AD) = (1+4|AD)/2) exp(-4|AD|/ 2 )
¥ —&— Squared Exponential Correlation Function (SQECF)
Mi:p(aD) = exp[-n(ADJ2)’]

Correlation coefficient, p(AD)
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Fig. 1. Four commonly-used correlation functions in geotechnical engineering (After
Phoon et al., 2003).

and A) of ¢’ using CPT data, which account for the transformation un-
certainty in an explicit and rational manner. However, these Bayesian
approaches need to prescribe a correlation function before the analysis,
which is unknown prior to site investigation. Cao and Wang (2014a)
proposed a Bayesian approach to select a proper correlation function
of g among a pool of candidate correlation functions, in which the ran-
dom field parameters of q are treated as nuisance parameters and the
transformation uncertainty is not involved. How to use a limited num-
ber of indirect test data (e.g., CPT data) to identify the random field pa-
rameters and simultaneously select an appropriate correlation function
for probabilistic characterization of ISV of design soil properties (e.g., ¢)
at a specific site remains an outstanding challenge. In addition, effects of
the correlation function on the random field parameters are also not
clear.

This paper develops Bayesian approaches that identify the random
field parameters (i.e., 4, 0, and A) of ¢’ and simultaneously select the
most probable correlation function of ¢’ among a pool of candidates
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Fig. 2. Regression between effective friction angle and normalized cone tip resistance
(After Kulhawy and Mayne, 1990; Phoon and Kulhawy, 1999b; Wang et al., 2010).

based on a limited number of project-specific CPT data and site informa-
tion available prior to the project, namely “prior knowledge”. The infor-
mation from CPT data and prior knowledge is systematically integrated
as the posterior knowledge on g, 0, and A under a Bayesian framework,
which is quantitatively reflected by their posterior distribution. The
computational complexity in solving the posterior distribution has
been considered as one key limitation of Bayesian methods
(e.g., Zhang et al., 2009). To bypass the computational complexity, the
posterior distribution can be solved by Laplace asymptotic approxima-
tion method (LAAM) when it is well approximated by a Gaussian distri-
bution (e.g., Wang et al., 2010; Cao and Wang, 2013; Ching et al., 2016).
When there are only a limited number of test data, which is often the
case in geotechnical engineering, the Gaussian approximation might
not be valid. In such a case, Markov Chain Monte Carlo Simulation
(MCMCS) provides a more appropriate tool to obtain the posterior
knowledge in Bayesian analysis by generating random samples of
model parameters concerned (e.g., 14, 0, and A) from the posterior distri-
bution (e.g., Zhang et al., 2010, 2012; Wang and Cao, 2013, Juang et al.,
2013; Peng et al., 2014; Cao and Wang, 2014b; Kelly and Huang, 2015;
Huang et al., 2016; Ching et al., 2016). Among various MCMCS algo-
rithms, Metropolis-Hastings (M-H) algorithm (e.g., Metropolis et al.,
1953; Hastings, 1970) is widely used for its simplicity. However, it has
a key limitation that M-H algorithm does not give the likelihood of
test data for a given model, which is often referred to as the “evidence”
on the given model provided by test data in Bayesian model selection
problems. This limitation makes the M-H algorithm infeasible in
model selection problems (e.g., Bayesian selection of the most probable
correlation function).

This paper removes the abovementioned limitations of M-H algo-
rithm using Gaussian copula and selects the most probable correlation
function among a pool of candidates (e.g., those shown in Fig. 1)
based on MCMCS samples generated by M-H algorithm for candidate
correlation functions. In addition, the proposed approaches also provide
insights into effects of correlation functions on random field parame-
ters. The paper starts with the development of the proposed Bayesian
approaches, followed by a brief description of their implementation. Fi-
nally, the proposed approaches are illustrated and validated using real-
life and simulated CPT data.

2. Bayesian identification of random field parameters

Random field theory (Vanmarcke, 2010) is used to explicitly model
the ISV of ¢’ within a statistically homogenous sand layer in this
study, by which ¢’ at different depths are modeled by a series of spatial-
ly correlated normal variables with a mean u and standard deviation o
(i.e., a one-dimensional stationary normal random field). The spatial
correlation between variations of ¢’ at different depths is then specified
by the scale of fluctuation A and a correlation function M. Examples of
correlation functions include the single exponential correlation function
(SECF), binary noise correlation function (BNCF), second order Markov
correlation function (SMCF), and squared exponential correlation func-
tion (SQECF), as shown in Fig. 1. Note that the correlation function M is
assumed to take a specific form (e.g., one of the correlation functions
shown in Fig. 1) in this section, but its corresponding A value is un-
known herein. A proper form of the correlation function will be deter-
mined among a pool of candidates (e.g., those shown in Fig.1) by a
Bayesian model selection approach in Section 3 entitled “Bayesian selec-
tion of spatial correlation function using MCMCS samples”.

For a given correlation function M, the stationary normal random
field of ¢’ is uniquely represented by the random field parameters X,
i.e., [1, o, \]. For a given set of prior knowledge and CPT data g there
are various possible values of random field parameters, and their re-
spective plausibility can be quantified by the posterior distribution
P(X |§ M) under a Bayesian framework, where the condition on M indi-
cates that the correlation function is assumed to take a specific form.
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