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A tetrahedral wedge of rock can slide on one or both of the bounding discontinuity surfaces. The test to identify
these two mechanisms can be performed on a stereograph based on the orientation of the two discontinuities,
their line of intersection and the slope face. An alternative stereographic method involves identifying the great
circle, known as a π-circle, linking the discontinuity poles and comparing this plane with the slope face orienta-
tion. A kinematically feasible wedge is double plane sliding unless the following two criteria are met. 1) One of
the poles is within the daylight envelope for the slope face and 2) that pole lies between the dip direction of
the π-circle and the direction opposite to the slope direction of the excavation face. These criteria are readily ob-
servable on a stereograph. The boundaries for poles capable of forming single and double plane slidingwedges in
combination with another pole can be marked as zones on the stereograph.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Rock slope stability is highly dependent on the orientation of the
discontinuities within the rock mass. In particular, the presence of
discontinuities in orientations that in combination can form tetrahe-
dral wedges of rock in excavated faces (Hoek and Bray, 1981; Wyllie
and Mah, 2004). Analysis of wedge stability can be conducted by
limit-equilibrium and finite element methods (Wang et al., 2004)
and can incorporate a range of aspects including dynamic effects
(Kumsar et al., 2000), dilatancy (Wang and Yin, 2002) and probabil-
ity (Jimenez-Rodriguez and Sitar, 2007). However, the stability anal-
ysis must be preceded by an assessment of the kinematics of
mechanisms requiring further analysis. A tetrahedral wedge of rock
can potentially slide on one or both of the discontinuity surfaces
that form its base and the stability analysis required for each mech-
anism differs (Hocking, 1976; Öcal and Özgenoğlu, 1997). Kinematic
analysis is typically initially conducted graphically using the stereo-
graphic system (Lucas, 1980; Priest, 1985; Lisle, 2004, Lisle and
Leyshon, 2004). The geometric relations of planes can be solved an-
alytically however, graphic representations such as the stereograph
remain important for presenting results and as a tool for performing
rapid assessment of field data. The conventional method of kinemat-
ic analysis involves an assessment of the orientation of the intersec-
tions of pairs of discontinuity planes (Markland, 1972; Goodman,
1980; Hudson and Harrison, 1997). An alternative method of kine-
matic analysis involves an assessment of the orientation of great

circles linking pairs of discontinuity poles relative to the daylight
window of the slope (Smith, 2016). These two methods will be re-
ferred to here as the intersection method and circle method, respec-
tively. This paper presents the use of the circle method to
differentiate single plane sliding and double plane sliding and assess
their kinematic feasible wedges.

2. Methodology

The circle method, or π-circle method, of kinematic analysis of po-
tential sliding wedges involves plotting stereographic great circles
through pairs of discontinuity poles and comparing the great circle to
the daylight envelope for the slope (Fig. 1A). If the π-circle passes
through from one half of the daylight envelope to the other half without
intersecting the friction circle, the wedge is kinematically feasible
(Smith, 2016). To identify the potential for single plane sliding or double
plane sliding to occur, the first criteria to consider is whether either pole
lies within the daylight envelope for that slope face. If neither pole lies
within the daylight envelope then single plane sliding is not possible.
If one or both poles lie within the daylight envelope then the circle
method can be further used to distinguish the mechanism of sliding.
When a π-circle is constructed through the two poles it will be observed
that the dip direction of the π-circle will be either opposite to the direc-
tion of the slope face or oriented in the same quadrant as one of the
poles. The sector between the dip direction of the π-circle and the hor-
izontal direction opposite to the slope face direction defines the range in
which a single plane sliding pole can lie (Fig. 1). If a pole within the day-
light envelope also lies within the single plane sliding range (as defined
by the π-circle formed with another pole) then it forms a kinematically
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feasible single plane slidingwedge surface (Fig. 1A). If thepole is outside
the single plane sliding range then the mechanism would be double
plane wedge sliding (Fig. 1B). The boundary case is where the down-
dip line of the π-circle coincides with a pole (Fig. 1C). Therefore, there

is no fixed boundary between poles for single plane and double plane
sliding, but a boundary that varies for each pair of wedge-forming poles.

It has been established that a wide range of pairs of planar orienta-
tions can intersect in such a way that the intersection occurs in the in-
tersection envelope on a stereograph (Hudson and Harrison, 1997).
For a pole to be part of a wedge-forming pair of poles it must lie in a de-
fined part of the stereograph relative to the slope (Smith, 2016). For
practical purposes it is logical to focus consideration on pairs of poles
which both dip outward from the slope face and each having opposing
apparent dips relative to the slope face. For example, wedges of most
practical significance for an east-dipping slope face would be formed
by two poles both of which are in the hemisphere on the western side
(outward dipping) of the stereograph with one pole located in the
northern half (left apparent dip, Fig. 2A) and the other pole located in
the southern half of the stereograph (right apparent dip, Fig. 2A). The
orientation of such poles will determine the shape and sliding mecha-
nism of the wedge, which can potentially form in the slope face (Fig.
2B). The shape of the wedge is observed from the angle between the
poles along the π-circle (75° in Fig. 2A) which is the supplement of
the angle between the planes defining the wedge (105° in Fig. 2B). If
one pole is selected for consideration various limitations can be set for
the orientation of the other pole which could potentially combine to
form a wedge.

There are five planes of particular importance to the formation of
specific types of wedge in combination with a given pole ‘P1’. One of
the planes is the limit to poles capable of being part of a feasible
wedge (Fig. 2A). That plane is designated as A–B. The four other
planes, which all pass through pole P1, will be designated as plane
B–C, plane C–D, plane D–E and plane D/E–F (Fig. 2C). Plane B–C is
the plane (great circle) passing through the pole to the slope face
(which is also the outermost point on the daylight envelope). Plane
C–D has a down-dip line which coincides with pole P1. Plane D–E is
the plane with the same strike as the slope face. Plane D/E–F is tan-
gential to the friction circle. Given an individual discontinuity plane
and a slope face it is useful to consider what discontinuity orienta-
tions could combine with the first discontinuity to form a wedge
and determine what would be the shape and sliding mechanism of
that wedge (Fig. 2D).

Based on the planes defined above, six zones can be defined on the
stereograph relative to an individual pole and a given slope face. The
six zones are designated A to F (Fig. 3). Zone A represents all poles
that do not have potential on their own to form a wedge, and therefore,
need not be considered further. Zone B represents poles that would
form aπ-circle intersecting the daylight envelope on one side of the ver-
tical plane perpendicular to the slope. Poles in this zone cannot form a
kinematically feasible wedge with pole P1. Zone C represents poles
that can form kinematically feasible wedges which would undergo sin-
gle plane sliding on the plane represented by pole P1. Zone D represents
poles that can form kinematically feasible wedges which would under-
go double plane sliding on the intersection with the plane represented
by pole P1. Zone E is limited to the daylight envelope and represents
poles that can form a wedge feasible for double plane sliding or single
plane sliding on that plane (depending on the location of the pole rela-
tive to the single plane sliding range defined in Fig. 1). Zone F represents
poles that form a π-circle that intersects the friction angle and therefore
cannot form mechanically feasible wedges with pole P1. The existence
and extent of each of these zones will vary according to the location of
pole P1 (Fig. 3A–D).

3. Conclusions

The shape, kinematics and mechanics of a tetrahedral wedge ex-
posed on a slope face cannot be fully represented by the orientation of
the line of intersection alone but also depends on the orientation of
each of the discontinuities bounding thewedge. The circle method pro-
vides away of retaining information relating the two planes forming the

Fig. 1. The circle method for identifying wedges with single plane sliding versus double
plane sliding. (A) Poles 1 and 2 combine to form a single plane wedge sliding on plane 1
(fc = friction angle circle, de = daylight envelope). (B) Poles 1 and 3 combine to form a
double plane sliding wedge. (C) The boundary between poles forming single and double
plane sliding mechanisms in conjunction with pole 1 is defined by the great circle (π-
circle) having a down-dip line coinciding with pole 1. Equal angle, lower hemisphere
stereograph. Friction angle is 30° and slope face angle is 50° toward east.
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