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ABSTRACT

Based on a generalized two-phase mass flow model (Pudasaini, 2012) as a mixture of solid particles and interstitial
fluid, here, we derive a novel dynamical model equation for sub-diffusive and sub-advective fluid flow in general
porous media and debris material in which the solid matrix is stationary. We construct some exact analytical solu-
tions to the new model. The complete exact solutions are derived for the full sub-diffusive fluid flows. Solutions for
the classical linear diffusion and the new sub-diffusion with quadratic fluxes are compared, and the similarities and
differences are discussed. We show that the solution to sub-diffusive fluid flow in porous and debris material is fun-
damentally different from the diffusive fluid flow. In the sub-diffusive process, the fluid diffuses slowly in time, and
thus, the flow (substance) is less spread. Furthermore, we construct some analytical solutions for the full sub-
diffusion and sub-advection equation by transforming it into classical diffusion and advection structure. High reso-
lution numerical solutions are presented for the full sub-diffusion and sub-advection model, which is then compared
with the solution of the classical diffusion and advection model. Solutions to the sub-diffusion and sub-advection
model reveal very special flow behavior, namely, the evolution of forward advecting frontal bore head followed
by a gradually thinning tail that stretches to the original rear position of the fluid. However, for the classical diffu-
sion-advection model, the fluid simply advects and diffuses. Moreover, the full sub-diffusion and sub-advection
model solutions are presented both for the linear and quadratic drags, which show that the generalized drag
plays an important role in generating special form and propagation speed of the sub-diffusion-advection waves.
We also show that the long time solution to sub-diffusive and sub-advective fluid flow through porous media is
largely independent of the initial fluid profile. These exact, analytical and numerical solutions reveal many essential
physical phenomena, and thus may find applications in modeling and simulation of environmental, engineering and

industrial fluid flows through general porous media and debris materials.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Macroscopic averaged equations describing fluid flow through po-
rous media are of great practical and theoretical interest in science
and technology including oil exploration and environment related
problems (Darcy, 1856; Richards, 1931; Bear, 1972; De Marsily, 1986;
Durlofsky and Brady, 1987; Dagan, 1989). There are several geophysical
and industrial applications of such fluid flows. This includes the flow of
liquid or gas through soil and rock (e.g., shell oil extraction), clay, gravel
and sand, or through sponge and foam. From geophysical and engineer-
ing prospectives, the fluid flows through porous and debris media are
important aspects as it is coupled with the stability of the slope, the sub-
surface hydrology, and the transportation of chemical substances in po-
rous landscape. Proper understanding of fluid flows in debris material
and porous landscape, and in general through porous media, is an im-
portant aspect in industrial applications, geotechnical engineering, en-
gineering geology, subsurface hydrology and natural hazard related
phenomena (Muskat, 1937; Barenblatt, 1952; Bear, 1972; Whitaker,
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1986; Boon and Lutsko, 2007; Vazquez, 2007). Better and reliable un-
derstanding of slope stability analysis, landslide initiation, debris and
avalanche deposition morphologies, including seepage of fluid through
relatively stationary porous matrix and consolidation, require more ac-
curate and advanced knowledge of fluid flows in porous materials. Un-
derstanding the dynamics of fluid flows in porous landscape may help
to develop early warning strategies in potentially huge and catastrophic
failure of landslides, reservoir dams and embankments in geo-disaster-
prone areas (Genevois and Ghirotti, 2005; Pudasaini and Hutter, 2007;
Khattri, 2014; Miao et al., 2014; Pudasaini, 2014), and deposition pro-
cesses of subsequent mass flows (Zhang et al., 2011; Kuo et al., 2011;
Mergili et al., 2012; Tai and Kuo, 2012; Fischer, 2013; Wang et al.,
2013; Zhang and Yin, 2013; Yang et al., 2015). Here, the terms porous
landscape, debris material and porous media are used as synonym, be-
cause in all these materials we assume that the fluid passes through
the relatively stationary solid skeleton, or matrix of granular particles.
Classically, the flow of a fluid through a homogeneous porous medi-
um is described by the porous medium equation. The model is derived
by using the continuity equation for the flow of ideal fluid through po-
rous medium, the Darcy law relating fluid pressure gradient to the
mean velocity, and by assuming a state equation for ideal fluid in
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which pressure is an explicit exponent (>1) function of the fluid (gas)
density. The resulting porous media equation is similar in form to the
classical diffusion equation, except that, in the porous medium equa-
tion, the diffusive flux is non-linear with exponent >2 (Bear, 1972;
Smyth and Hill, 1988; Vazquez, 2007) which is ultimately responsible
for the slow diffusion process. Exact solutions exist for the porous medi-
um equation (Barenblatt, 1952, 1953; Evans, 2010; Boon and Lutsko,
2007) in similarity form. Unlike the classical diffusion equation, the so-
lution for porous medium equation is bounded by finite propagation
speed of the flow fronts, and a compact support (Daskalopoulos,
2009), which means the solution is contained within a fixed domain.

Based on the generalized two-phase mass flow model (Pudasaini,
2012) this paper presents a novel sub-advection and sub-diffusion
model equation and its analytical solutions for fluid flows through in-
clined debris materials and porous landscapes with stationary solid ma-
trix. In these scenarios, we show that a number of important physical
phenomena are rather governed by the nonlinear advection and diffu-
sion processes that are associated with exact description of physical
model parameters. Our results reveal that solutions to the sub-
diffusive fluid flow in porous media and porous landscape is fundamen-
tally different from the classical diffusive fluid flow or diffusion of heat,
tracer particles and pollutant in fluid. Reduced models and exact solu-
tions are presented for the sub-diffusive fluid flow. We outline some
possible and systematic ways to construct analytical solutions for our
new full sub-diffusion and sub-advection equation (also see, Boon and
Lutsko, 2007). This includes the transformation of the model (in the
form) to the convenient classical diffusion-advection equation for
which we have constructed advanced analytical solutions by using the
Bring ultraradical (Bring, 1864) and higher-order hypergeometric func-
tion. Furthermore, separation of variables leads to special ordinary dif-
ferential equations in the form of Lienard and Abel canonical
equations, that may provide other set of exact solutions (Lienard,
1928). We have presented numerical solution to such model that pro-
vides insight into the intrinsic nature of fluid flow in porous media.

New analytical solutions for fluid flows through debris material and
porous landscape are then compared with numerical simulations to
measure the performance of the numerical method for their further
use in relevant fluid flows. The widely used high-resolution, shock-
capturing Total Variation Diminishing Non-oscillatory Central (TVD-
NOC) scheme (Nessyahu and Tadmor, 1990; Tai et al, 2002;
Pudasaini, 2011) is implemented to solve the model equations numeri-
cally. For alternative numerical methods including finite volume, dis-
crete element methods, spring-deformable-block model, we refer to
Crosta et al. (2003), Mangeney-Castelnau et al. (2003), Denlinger and
Iverson (2004), Pirulli (2009), Teufelsbauer et al. (2011) and Yang
et al. (2015). Numerical results are presented for the full sub-diffusion
and sub-advection model, which is then compared with the solution
of the classical diffusion and advection model. Special features associat-
ed with the new model, and as revealed by the exact, analytical, and nu-
merical solutions, are discussed in detail. Moreover, the full sub-
diffusion and sub-advection model solutions are presented both for
the linear and quadratic drags. The long time solutions are analyzed
for different initial fluid profiles.

On the one hand, exact, analytical, and numerical solutions dis-
close many new and essential physics, and thus, may find applica-
tions in environmental, engineering and industrial fluid flows
through general porous media, natural slopes, embankments
(e.g., of hydro-electric power reservoirs and dams), and debris mate-
rials. While on the other hand, analytical and exact solutions to sim-
plified cases of nonlinear model equations are necessary to calibrate
numerical solution methods (Pudasaini, 2011). The reduced and
problem-specific solutions provide important insights into the full
behavior of the complex two-phase system, mainly the flow of fluid
through the porous media. Broadly speaking, these results can fur-
ther be applied to the problems related to hydrogeology, and envi-
ronmental pollution remediation.

2. The two-phase mixture model

In order to develop a new sub-diffusion and sub-advection model for
fluid flow through a porous media, we consider the general two-phase
mass flow model (Pudasaini, 2012) that describes the dynamics of a
real two-phase debris flow as a mixture of the solid particles and the in-
terstitial fluid. The model is developed within the framework of contin-
uum mechanics. For more on multi-phase and other relevant flows, we
refer to Richardson and Zaki (1954), Anderson and Jackson (1967),
Drew (1983), Ishii and Hibiki (2006), and Kolev (2007). The two phases
are characterized by distinct material properties: the fluid phase is char-
acterized by its true density py, viscosity 1), and isotropic stress distribu-
tion, whereas the solid phase is characterized by its material density ps,
internal and basal friction angles, ¢ and 6, respectively, and an aniso-
tropic stress distribution, K (lateral earth pressure coefficient). These
characterizations and the presence of relative motion between these
phases result in two different mass and momentum balance equations
for the solid and the fluid phases, respectively. Let us, uf and
s, 0 (=1-ay) denote the velocities, and volume fractions for the
solid and the fluid constituents, denoted by the suffices s and f, respec-
tively. The general two-phase debris flow model reduced to one-
dimensional flows down a slope are described by the following set of
non-linear partial differential equations (Pudasaini, 2012, 2014;
Pudasaini and Miller, 2012; Pudasaini and Krautblatter, 2014):
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Egs. (1) and (2) are the depth-averaged mass balances, and Egs.
(3) and (4) are the depth-averaged momentum balance equations for
the solid and the fluid phases, respectively.

The force/source terms in the momentum equation for the solid-
phase (Eq. (3)) is
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Similarly, the force/source term for the fluid-phase (Eq. (4)) is
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In Egs. (5) and (6), j=1 or, 2 correspond to the linear, or quadratic
drags. The other parameters are
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In the above equations, t is the time, h is the flow depth (or, porous
material height). p, and pj, are associated with the effective fluid and
solid pressures. x and z are coordinates along the flow directions, and
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