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Conventional assessment of the potential sliding of wedge blocks involves identification of the lines of inter-
section of the two planes on a stereograph. The stereographic envelope for kinematically feasible wedge inter-
sections exists between the plane of the slope face and a friction circle. An alternative method of stereographic
analysis is presented involving fitting great circles to a pair of poles representing the planes of the wedge. If
the great circle passes through the polar daylight envelope for the slope face, without passing through the friction
circle, wedge sliding on the pair of discontinuities is kinematically feasible. Thismethod is advantageous as 1) the
distribution of discontinuity poles on a stereograph can be interpreted directly without showing the individual
planes as great circles, 2) only pairs of discontinuities from opposing orientations are included, 3) geometric
attributes of the potential wedges, such as symmetry and shape, can be assessed directly on the stereograph
and 4) reduction of data to sets is not required prior to kinematic assessment.
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1. Introduction

The potential for tetrahedral wedge-shaped blocks of rock to slide
on two discontinuity planes is a well-known problem in rock slope en-
gineering (Goodman, 1980; Brown, 1981; Hoek and Bray, 1981; Park
and West, 2001; Lisle and Leyshon, 2004). The problem is typically ad-
dressed in two stages. Firstly, the potential or feasibility of the block's
movement or kinematics is assessed. This kinematic assessment is typ-
ically conducted on a stereograph (Hoek and Bray, 1981). Demonstrated
kinematic feasibility indicates that the second stage, stability analysis,
may bewarranted. Only the first stage, kinematic assessment, is consid-
ered in this paper.

The lateral transition between planar sliding and wedge sliding is
also not considered in this paper. This transition is complex as tetrahe-
dral wedges which typically slide on both planar surfaces in the direc-
tion of the intersection line, can slide on one of the planes in its
down-dip direction (Markland, 1972; Hocking, 1976; Lucas, 1980).
The lateral limit of planar sliding has been selected by some authors
as ±20°, however, this limt has been defined by small circles (Wyllie
and Mah, 2004, Fig. 1A) or as vertical planes (Hudson and Harrison,
2000, Fig. 1B).

An important concept in kinematic assessment of any slidingmech-
anismon a stereograph is the daylight envelopewhichdefines the range
of poles which have their dip vectors on or outside the slope plane
(Wyllie and Mah, 2004). Wyllie and Mah (2004, p. 38) label the entire
daylight envelope as the ‘daylight envelope for wedges’ with an
overprinted pattern for the planar sliding part of the envelope. Wyllie
and Mah (2004, p. 39) also label the daylight envelope as the ‘envelope
of potential instability: wedges’ (Fig. 1 C&D). This statement is incom-
patible with examples of wedge sliding that clearly have poles outside

the daylight envelope. An example of a kinematically feasible pair of
discontinuities (Wyllie and Mah, 2004, p. 45), when compared to the
daylight envelope, readily shows that the poles to the wedge sliding
planes do not lie in the daylight envelope (Fig. 1 E).

Current practice for kinematic assessment of potential sliding
wedges emphasises identifying the lines of intersection (e.g. Hudson
and Harrison, 2000, p. 316) however, the distribution of the poles
forming the wedges should also be included in a kinematic assessment
to confirm that the intersection occurs from discontinuities with oppos-
ing dip directions relative to the slope direction.

It has been previously recognised that the great circle (otherwise
known as a cyclographic trace) passing through a pair of discontinuity
poles has as its pole the line of intersection of the two planes (Hoek
and Bray, 1981, p. 58, Fig. 1F). It is this relationship between discontinu-
ity poles and kinematic feasibility which is further explored in this
paper.

2. Potential for a single pole to be part of a wedge sliding pair

If the daylight envelope does not limit the range of poles capable of
forming sliding wedges (as demonstrated in Fig. 1), then it is necessary
to determine what the limits are. The condition that two planes inter-
sect within the intersection envelope (between the slope face and the
friction circle measured from the stereograph perimeter) has the pre-
condition that both planesmust pass through the intersection envelope.
Therefore for a single plane to have the potential to contribute to a pair
of wedge sliding planes, it must itself pass through the intersection en-
velope. It can be readily found that a great many planar orientations
pass through the intersection envelope. The exceptions are those planes
which dip too gently and those which dip too steeply. There are five
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features which limit the range of poles which may form one part of a
pair of wedge sliding discontinuities (Table 1). The boundary which
has not previously been identified is the plane with its pole at the end

of the intersection envelope (Fig. 2A, star). Planes with poles steeper
than that great circle do not pass through the intersection envelope.
Any pole within the defined range (Fig. 2, shaded) passes through the
intersection envelope and dips outward from the face.

When applied to stereographs for a range of face slope angles, it can
be seen that a large part of each quadrant opposite the slope face allows
for the potential for poles to represent planes which pass through the
intersection envelope and therefore have the potential to form part of
a pair of wedge sliding planes (Fig. 2). Any pole lying outside this
range can be excluded from consideration as a potential contributor to
wedge sliding for the given face orientation, slope face angle and fric-
tional conditions of the discontinuities. The range of planar sliding
poles (not shown in Fig. 2) effectively separates the potential wedge
forming polar envelopes into two zones with opposing dip directions
relative to the slope face. Potential sliding wedges are formed by a
pair of poles, one from each of these zones.

3. Combinations of two poles to form a wedge sliding pair

Although the range of pole orientationswhich can formone part of a
wedge sliding pair has been defined above, it does not follow that every
pair of such planes will form a potential sliding wedge. In conventional

Fig. 1. (A) Lateral limit between planar and wedge sliding based on a small circle.
(B) Lateral limit between planar and wedge sliding based on vertical planes.
(C) Daylight envelope applied to wedge stability for an 80° dipping slope and (D) a 50°
dipping slope (with the annotations from Wyllie and Mah (2004), p. 39). (E) Potential
wedge sliding on two discontinuities not in the daylight envelope (Wyllie and Mah,
2004, p. 45, rotated to an east dipping slope for comparison). (F) Stereograph of
contoured discontinuity data (Hoek and Bray, 1981 p. 58, rotated to an east dipping
slope for comparison). (A–E) Equal angle stereographs. (F) Equal area stereograph.

Table 1
Features marking the range of poles which may form one part of a pair of wedge sliding
discontinuities.

Stereographic feature Explanation

Primitive circle (perimeter of
stereograph, horizontal plane)

Beyond this limit the plane would dip steeply
toward the slope face.

Vertical plane parallel to slope
face

Beyond this limit the plane would dip toward
the slope face (kinematically feasible wedges
can include a plane dipping into the face but
this is not considered significant in this study).

Lateral limit from parallel to
slope face

A boundary between planar and wedge sliding
planes (not specified in this study). For
example slope direction ±20°. may be
bounded by vertical planes or small circles.

Friction circle Beyond this limit sliding on the plane is
mechanically infeasible.

Planes perpendicular to each end
of the intersection envelope

Beyond this limit the plane does not pass
through the intersection envelope.

Fig. 2. (A) Envelope (shaded) for poles to discontinuity great circles which pass through
the intersection envelope (stippled) and dip out of the face, for a slope face dipping 40°
toward the east. The great circle perpendicular to the point at each end of the
intersection envelope (stars) forms part of the pole envelope boundary. An example of a
plane meeting the criteria is shown (circle). (B–E) Envelopes for slope faces dipping 50°,
60°, 70° and 80°, respectively. Polar daylight envelope is dashed. Friction angle (A–E) is
30°. (F) Envelope for slope face dipping 80° with friction angle of 20°. Equal angle
stereographs.
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