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Stratigraphic (or lithological) uncertainty refers to the uncertainty of boundaries between different soil layers and
lithological units, which has received increasing attention in geotechnical engineering. In this paper, an effective sto-
chastic geological modeling framework is proposed based on Markov random field theory, which is conditional on
site investigation data, such as observations of soil types from ground surface, borehole logs, and strata orientation
fromgeophysical tests. The proposedmodelingmethod is capable of accounting for the inherent heterogeneous and
anisotropic characteristics of geological structure. In this method, two modeling approaches are introduced to sim-
ulate subsurface geological structures to accommodate different confidence levels on geological structure type
(i.e., layered vs. others). The sensitivity analysis for two modeling approaches is conducted to reveal the influence
of mesh density and the model parameter on the simulation results. Illustrative examples using borehole data are
presented to elucidate the ability to quantify the geological structure uncertainty. Furthermore, the applicability of
twomodeling approaches and the behavior of the proposedmodel under differentmodel parameters are discussed
in detail. Finally, Bayesian inferential framework is introduced to allow for the estimation of the posterior distribu-
tionofmodel parameter,whenadditional or subsequent borehole informationbecomes available. Practical guidance
of using the proposed stochastic geological modeling technique for engineering practice is given.
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1. Introduction

In recent years, the uncertainty arising from characterizing inherently
heterogeneous soil median has received increasing attention in geotech-
nical engineering. Soil heterogeneity can be attributed to two main
sources (Elkateb et al., 2003). The first source of heterogeneity, which
can be called the inherent spatial variation of soil properties, is thatwithin
a single formation layer, the soil properties are different fromone point to
another in space due to the difference of geological deposition history and
human activities. The second source of heterogeneity is the stratigraphic
or lithological uncertainty, which can be interpreted as the uncertainty
of interfaces (boundaries) between different soil layers or lithological
units due to limited subsurface investigation data. Substantial research
work has been performed on the former type of soil heterogeneity within
one nominally homogeneous layer by using either geo-statistics or ran-
dom field theory. The common practice is to apply Gaussian random
field equipped with specific correlation structure to simulate the spatial
variability of soil properties with consideration of inherent spatial

correlation (Fenton, 1999; Griffiths and Fenton, 2004; Zhu and Zhang,
2013). For this modeling framework, recent studies have been reported
to characterize the soil parameters by using site exploration data (Cao
and Wang, 2012; Gong et al., 2014; Wang and Cao, 2013). However, the
treatment of this type of uncertainties resulting from lithological hetero-
geneity has been dealt with mainly by using engineering judgment
based on local experience (Elkateb et al., 2003). In contrast, thework pre-
sented in this paper focuses on stochastic modeling techniques for quan-
tifying uncertainties of geological structure due to limited site exploration
data.

Modeling soil profiles for a project site is commonly done by interpo-
lationusing a set of observations fromborehole logs spaced somedistance
apart coupled with local geological experience (Nobre and Sykes, 1992).
For such purpose, several approaches based on geo-statistical methods
or interpolation methods have been established (Auerbach and
Schaeben, 1990; Blanchin and Chilès, 1993; Chilès et al., 2004). However,
most of thesemethods focus on estimate of the subsurface structure (geo-
logical model) with theMaximum Probability Estimate (MPE) conditional
on local experiences, e.g. kriging,which is point estimation, and hence the
lithological uncertainty cannot be quantified. Recently, probabilistic ap-
proaches have been developed to determine underground soil stratifica-
tion based on cone penetration test (CPT) data (Cao and Wang, 2012;
Ching et al., 2015; Wang et al., 2013) and to identify soil strata in
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London Clay formation based on water content data (Wang et al.,
2014). Among these studies, the contact points of the subsurface
stratigraphy are determined probabilistically. In the work presented
herein, the spatial correlation of lithological units is defined by a
graphical model (neighborhood system). Multiple stochastic realiza-
tions of subsurface configuration are generated. The statistical
analysis of the realizations is used subsequently for stratigraphic
uncertainty quantification.

In the context of stochastic simulation of subsurface structure, the
Markov chain modeling method (Elfeki and Dekking, 2001) and
multiple-point geo-statistics (Caers and Zhang, 2004) are capable of gen-
erating multiple realizations. However, these techniques may suffer cer-
tain limitations, such as stationary assumption, or that only a single type
of observation data is used (i.e. borehole logs). To further relax these po-
tential limitations, we have developed an innovative simulation method
based on Markov random field. This method aims to reflect the inherent
heterogeneous (multiple geo-material types), anisotropic (directionally
dependent local correlation) and non-stationary (local correlation differs
amongdifferent points in space) characteristics of geological body, aswell
as taking into consideration of the intrinsic local correlation of geological
structure. Three types of site investigation data could be used as input in
this model, including ground surface soil types, boundaries of different
soil layers at each borehole log location, and strata orientation informa-
tion (e.g., from ground penetration radar test and/or seismic survey
data). Two stochastic modeling techniques are developed to generate
the corresponding subsurface lithological unit configurations with the
purpose of accommodating different confidence levels on geological
structure type (i.e., howmuch confidence do we have regarding prior in-
formation showing layered structure or not). The concept of “information
entropy” originally suggested by Wellmann and Regenauer-Lieb (2012)
for a quantitative measure of uncertainty in geological modeling, is
adopted herein to quantify stratigraphic uncertainty in the post-
processing stage.

This paper is organized as follows. In Section 2, the proposed
stochastic geological model is introduced, including model frame-
work and stochastic simulation process. In Section 3, two modeling
approaches, together with the corresponding numerical example
results and model parameter sensitivity analysis are presented.
To illustrate the performance of these two modeling approaches,
the sensitivity analysis is carried out. In particular, the influence of
discretizing mesh density and model parameter on the simulation
results is systematically studied. In Section 4, the Bayesian inferen-
tial framework is introduced to allow for estimating model parame-
ter for several scenarios when additional borehole data may
subsequently become available for updating purpose. Finally,
conclusions are presented in Section 5.

2. Stochastic geological model

The geological body is considered as a spatially correlated system
with a certain configuration of different lithological units (i.e., geo-
material layers and layers' orientation information). Markov random
field theory as one of the most sophisticated spatial statistical models
provides a convenient and consistent way for modeling context depen-
dent entities such as correlated features and for analyzing the spatial de-
pendencies of physical phenomena (Li, 2009; Zhang et al., 2001). In this
study, the naturally occurring geological body is assumed to be in a “sta-
ble state” and the intrinsic spatial correlation of geological structure can
be modeled by contextual constraint using MRF theory. The root of such
assumption is based on its successful application in geo-statistics,
i.e., MRF has been used to model discrete geological structures
(Norberg et al., 2002), and to consider geological realism and connectiv-
ity (Daly, 2005) as well as in geological mapping (Tolpekin and Stein,
2009). Meanwhile, as proven by the Hammersley–Clifford theorem
(Besag, 1974; Hammersley and Clifford, 1971), a MRF process is equiv-
alent to a given Gibbs random field. SuchMRF-Gibbs equivalencemakes
it possible to represent the joint probability distribution ofMRF in an ex-
plicit formula of energy function (Geman and Geman, 1984), thereby
provides a feasible and powerfulmechanism formodeling spatial conti-
nuity and aggregation of the stratigraphic profile.

2.1. Neighborhood system, Markov random field and Gibbs distribution

2.1.1. Neighborhood system
The proposed geological model is constructed by discretizing the

geological body of interest into small square elements. A neighborhood
system is developed to represent the spatial correlation.

Let S={i | i=1,2, ... ,n} be the set of elements inwhich i is an element
index. In an MRF, the elements in S are related to one another via a
neighborhood system, which is defined asN={Ni | i∈S}. Ni is the set of
all elements which share common node(s) with element i in the
meshed plot. Fig. 1 shows an example of a local neighborhood system. El-
ement i has a local neighborhood system Ni containing 8 neighbors
{j1, ... , j8} but not including itself, and the neighboring relationship is
mutual. Note that boundary element has fewer neighbors.

2.1.2. Markov random field and Gibbs distribution
Let R={Ri, i∈S} be a set of random variables indexed by S, in which

each random variable Ri takes a label ri (i.e., lithological unit label, such
as sand, clay, shale, etc.) in its state space L={1,2, ... ,m, ...l} of all litho-
logical units (or labels). The event R=r indicates the joint event (Ri=
ri , i∈S), where r={r1, ... , rn} denotes a subsurface configuration of R,
corresponding to a realization of this random field R. Let ℜ={r=

Fig. 1. Local neighborhood system.
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