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The deformationmodulus is one of the most important parameters to model the behavior of rockmasses, but its
direct measurement by in situ tests is costly, time-consuming and sometimes infeasible. For that reason, many
models have been proposed to estimate the deformationmoduli of rockmasses based on geotechnical classifica-
tion indices, such as the Rock Mass Rating (RMR), the Geological Strength Index (GSI), the Tunneling Quality
Index (Q), or the Rock Quality Designation (RQD). We present an approach, based on model selection
criteria—such as Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance informa-
tion criterion (DIC)— to select themost appropriatemodel, among a set of four candidatemodels—linear, power,
exponential and logistic—, to estimate the deformationmodulus of a rockmass, given a set of observed data. Once
themost appropriatemodel is selected, a Bayesian framework is employed to develop predictive distributions of
the deformation moduli of rock masses, and to update themwith new project-specific data that significantly re-
duce the associated predictive uncertainty. Such Bayesian updating approach can, therefore, affect our computed
estimates of probability of failure, which is of significant interest to reliability-based rock engineering design.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The deformation modulus of a rock mass is one of the most impor-
tant parameters influencing its mechanical behavior (Kayabasi et al.,
2003). Therefore, it is one of themost commonly required input param-
eters for both analytical and numerical methods in geotechnical engi-
neering, and it is the basis for many geotechnical analyses (Palmström
and Singh, 2001).

According to the Commission of Terminology of the International
Society of Rock Mechanics (ISRM, 1975), the deformation modulus of
a rockmass, Erm, is defined as “the ratio of stress to corresponding strain
during loading of a rock mass including elastic and inelastic behavior”.
There aremany in situ tests to directlymeasure Erm such as plate loading
or plate jacking tests, dilatometer tests, flat jack tests, pressure chamber
tests, etc. (Bieniawski, 1978; Palmström and Singh, 2001; Hoek and
Diederichs, 2006; Kang et al., 2012). However, such in situ tests are
time consuming, expensive and sometimes even infeasible. For that rea-
son, manymodels have been proposed to indirectly estimate the defor-
mation moduli of rock masses based on geotechnical classification
indices such as the Rock Mass Rating (RMR), the Geological Strength
Index (GSI), the Tunneling Quality Index (Q), or the Rock Quality

Designation (RQD) (Bieniawski, 1978; Serafim and Pereira, 1983;
Nicholson and Bieniawski, 1990; Barton, 1996; Sonmez et al., 2004;
Hoek and Diederichs, 2006; Zhang, 2010). The most commonly used
models are summarized in Table 1.

Since dozens of models (see Table 1) have been proposed
during the past decades, engineering practitioners are often concerned
about “how to choose the most appropriate model” to be used in a
particular project for which there is a set of available data. To tackle
this problem, a suitable model selection method should be adopted
(see e.g., Burnham and Anderson (2002) for details). Since most of the
models (i.e., empirical correlations) listed in Table 1 are obtained
using regression methods, one may naturally think that comparing the
R2 of differentmodels is themost convenient approach for model selec-
tion. But this approach only measures the goodness of fit of the model;
model complexity is ignored, hence always favoring “fuller” models
with more parameters. In other words, “neglecting the principle of
parsimony makes it a poor technique for model selection” (Johnson
andOmland, 2004). In contrast,model selection criteria based on “infor-
mation criteria” consider both model fit and complexity, hence being
more suitable for model selection. While model selection criteria have
been previously used in geotechnical engineering (Honjo et al., 1994;
Li et al., 2013; Tang et al., 2013a, 2013b; Cao and Wang, 2013; Wang
et al., 2013; Cao and Wang, 2014a, 2014b; Wang et al., 2014),
we hope that the application presented herein can help, in conjunction
with other recent contributions (Wang and Aladejare, 2015), to
promote a wider use of model selection in rock engineering and, in
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particular, in application related to the estimation of the deformation
modulus of rock masses.

Model selection criteria can be used to identify the “best”model, al-
though predictions conducted with such “best” models are sometimes
associated to large uncertainties due to the high variability of data
employed to build them. Within this context, further improvements
could be achieved with a Bayesian updating approach, so that uncer-
tainties can be reducedwhen newproject-specific observations become
available, hence helping designers to “maximize the value of new
project-specific observations” (Zhang et al., 2004). This is because the
Bayesian updating is expected to reduce the predictive uncertainty
(i.e., the COV of the predictive distribution), which may be of interest
to reliability-based designs, as the computed probability of failure of a
design will be influenced by such predictive uncertainty.

In this study, we present an approach to select the most appropriate
model, among four commonly used candidate models, to estimate the
deformationmodulus of a rockmass, Erm, based on its RMR orGSI values.
The proposed approach builds on the use of “information criteria” to
rank models, considering both their fit and complexity. In addition, we
propose a procedure, within the Bayesian framework for model
updating, to systematically update the predictive distribution of Erm,
and its associated predictive uncertainty, when new “project-specific”
data are available. Finally, we use an example case of an assumed circu-
lar rock tunnel design to show that the reduction of predictive uncer-
tainties achieved with the Bayesian updating has a significant
influence on the computed reliability estimates of a rock engineering
design.

2. Bayesian models: inference, selection and prediction

2.1. Introduction

The relationship between observed (input or independent) and esti-
mated (output or dependent) variables in real rock engineering prob-
lems, such as estimating the deformation modulus of rock masses, is
often complex. But, in some cases, we may build a model, zi=Mi(x,Θ),
to describe such complex behavior, where zi (i=1,2 , . . . , r) denote
the (observable) dependent variables, x=(x1, x2, ... , xm) is the
m-dimensional vector of the (observable) independent variables,
and Θ=(θ1,θ2, ... ,θp) is the p-dimensional vector of (unobservable)
model parameters that need to be estimated based on observed data.
(Geyskens et al., 1998). Mi(⋅, ⋅) represents the relationship between
them. For instance, the correlation proposed by Serafim and Pereira
(1983) to estimate the deformation modulus of a rock mass, i.e., Erm =
10(a⁎RMR+b), is a model with r = 1, in which the input variable x= RMR
is one dimensional (m = 1), and in which the vector of parameters is
given by Θ=(a=1/40,b= ‐1/4) (Note, therefore, that p = 2). That is,
in this model, RMR is the (observable) independent variable, Erm is the
(observable) dependent variable, and Θ= (a, b) are the (unobservable)
model parameters to be estimated. Since a model is only an approxima-
tion to the complex real-world phenomenon, models are usually imper-
fect and their predictions are uncertain (Geyskens et al., 1993). In
addition, simplifications are unavoidable and, as it is clear from Table 1,
there may be many different models for the same task. Here, we use a
Bayesian approach to infer and update a set of model parameters, Θ, for

Table 1
A summary of models to estimate the deformation moduli of rock masses based on geotechnical classification indices.

Proposed by Empirical correlations Input parameters Types Limitations

Bieniawski (1978) Erm = 2RMR − 100 RMR Linear RMR N 50
Serafim and Pereira (1983) Erm = 10((RMR − 10) / 40) RMR Exponential
Kim (1993) Erm = 300 × 10−3exp(0.07RMR) RMR Exponential
Read et al. (1999) Erm = 0.1(RMR / 10)3 RMR Power
Jašarević and Kovačević (1996) Erm = exp.(4.407 + 0.081 ∗ RMR) RMR Exponential
Aydan et al. (1997) Erm = 0.0097RMR3.54 RMR Power
Verman et al. (1997) Erm = 0.4Hα10((RMR-20)/38 RMR, H, α Exponential
Diederichs and Kaiser (1999) Erm = 7(±3)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ðRMR�44Þ=21

p
RMR Non-linear

Galera et al. (2005) Erm = 0.0876RMR RMR Linear RMR N 50
Galera et al. (2005) Erm = 0.0876RMR + 1.056(RMR − 50) + 0.015 (RMR − 50)2 RMR Polynomial RMR ≤ 50
Shen et al. (2012) Erm = 100exp[−((RMR − 100) / 37)2] RMR Gaussian function
Khabbazi et al. (2013) Erm = 9 × 10−7RMR3.868 RMR Power
Nicholson and Bieniawski (1990) Erm = Ei(0.0028RMR2 + 0.9exp(RMR / 22.82)) RMR, Ei Non-linear
Mitri et al. (1994) Erm = Ei[0.5(1 − cos(πRMR / 100))] RMR, Ei Trigonometric
Aydan and Kawamoto (2000) Erm = Ei[RMR / (RMR + β(100 − RMR))] RMR, Ei, β Fractional
Galera et al. (2005) Erm = Ei exp.((RMR − 100) / 36) RMR, Ei Exponential
Sonmez et al. (2006) Erm = Ei10[(RMR − 100)(100 − RMR) / 4000 ∗ exp.(−RMR / 100)] RMR, Ei Exponential
Shen et al. (2012) Erm = Ei exp.[−((RMR − 116) / 41)2] RMR, Ei Gaussian function

Hoek and Brown (1997) Erm =
ffiffiffiffiffiffi
σci
100

q
10((GSI − 10) / 40) GSI, σci Exponential

Hoek et al. (2002) Erm = (1 − D / 2)
ffiffiffiffiffiffi
σci
100

q
10((GSI − 10) / 40) GSI, σci, D Exponential σci b 100

Hoek et al. (2002) Erm = (1 – D/2) 10((GSI-10)/40) GSI, D Exponential σci N 100

Hoek and Diederichs (2006) Erm = Ei

�
0:02þ 1�D=2

1þe
60þ15D�GSI

11

�
GSI, Ei, D Sigmoid equation

Hoek and Diederichs (2006) Erm = 100
�

1�D=2

1þe
75þ25D�GSI

11

�
GSI, D Sigmoid equation

Sonmez et al. (2004) Erm = Ei (sa)0.4; s = exp.[(GSI − 100) / (9 − 3D)],
a = 0.5 + 1 / 6(exp(−GSI / 15) + exp.(−20 / 3))

GSI, Ei, D Non-linear

Barton (1983) Erm = 25log10(Q) Q Logarithmic Q N 1
Barton (1995) Erm = 10Q1/3 Q Power
Palmström and Singh (2001) Erm = 8Q0.4 Q Power 1 b Q b 30
Kang et al. (2012) Erm = 10(0.32logQ + 0.585) Q Exponential
Barton (1996) Erm = 10Q1/3 c; Qc = Q(σci / 100) Q, σci Power
Coon and Merritt (1970) Erm = Ei(0.0231RQD − 1.32) RQD, Ei Linear
Kayabasi et al. (2003) Erm = 0.135[Ei (1 + RQD / 100) / WD]1.1811 RQD, Ei, WD Non-linear
Gokceoglu et al. (2003) Erm = 0.001[(Ei/σci) (1 + RQD / 100) / WD]1.5528 RQD, Ei, σci, WD Non-linear
Zhang and Einstein (2004) Erm = Ei 10(0.0186RQD – 1.91) RQD, Ei Exponential
Palmström and Singh (2001) Erm = 7RMi0.4 RMi Power

Erm deformationmodulus of rockmass (GPa),H depth of tunnel (m),α a parameter related to RMR, σci uniaxial compressive strength of intact rock (MPa), Ei elasticmodulus of intact rock
(GPa), WD weathering degree, β a constant to be determined using a minimization procedure for experimental values, RMi rock mass index.
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