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Tunnel squeezing or time-dependent large deformations due to creep are common in tunnels constructed in weak
rock masses at large depth or subjected to high horizontal in situ stresses in tectonically active regions. Squeezing
can produce tunnel collapses, budget overruns and construction delays, and being able to predict squeezing is there-
fore important. This study presents a novel application of Bayesian networks (BNs) to predict squeezing. In parti-
cular, we employ a Naïve Bayes classifier based on five parameters – support stiffness (K), Rock Tunneling Quality
Index (Q), tunnel depth (H), tunnel diameter (D), and strength–stress ratio (SSR) – aboutwhich information is com-
monly available at early design stages. The Naïve Bayes classifier is “learned”, using the Expectation Maximization
algorithm, with a database of 166 tunneling case histories from 7 countries compiled by the authors which is pro-
vided as Supplementarymaterial. Then, the Junction Tree algorithm is employed for “belief updating”; i.e., to predict
the probability of tunnel squeezing for a given set of (probably incomplete) evidence. The model is validated using
10-fold cross-validation and also using an additional set of case-histories that had not been originally employed to
learn the network. Results show that, when comparedwith other available criteria, the error rate of our BN is among
the lowest, but with the advantage that it is able to provide predictions evenwith incomplete data. Results of a sen-
sitivity analysis to assess the importance of input parameters on the squeezing outcome are also presented. And,
finally, a web-based implementation of the proposed BN is provided to improve the ease-of-use of our approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ISRMCommission on Squeezing Rocks in Tunnels defined squeez-
ing as “the time-dependent large deformation, which occurs around the
tunnel, and is essentially associatedwith creep causedby exceeding a lim-
iting shear stress” (Barla, 1995). A commonly accepted deformation
threshold to define squeezing occurrence is ε = 1% (Chern et al., 1998;
Jimenez and Recio, 2011; Sakurai, 1983), where ε is the “normalized
convergence” defined as the ratio (in %) between tunnel closure and tun-
nel diameter. Note, however, that such 1% limit is “only an indication of
increasing difficulty”, so that tunnels with much higher strains have
been completed without stability problems (Hoek, 2001).

Squeezing in rock tunnels often occurs in soft (weak) rockmasses at
great depth; it is also common in tunnels subjected to high horizontal in
situ stresses in tectonically active regions like the Himalayas (Jimenez
and Recio, 2011; Steiner, 2000; Sunuwar, 2007). Squeezing may cause
tunnel collapses, budget overruns and construction delays. Therefore,
many correlations – based on case histories, closed-form solutions, or
numerical models – have been proposed to predict squeezing; a
summary of these studies is presented in Table 1. Analytical or numeri-
cal solutions to time-dependent (or creep) deformations (see, e.g. Guan

et al., 2008; Phienwej et al., 2007; Sterpi and Gioda, 2009) are outside
the scope of our analysis and, therefore, they are not reviewed herein.

This paper uses Bayesian networks (BNs) to predict the occurrence
of squeezing. BNs were introduced by Pearl (1986) to more easily deal
with conditional dependency relationships between the (observable
or unobservable) random variables of a statistical model, and they
have been shown to have advantages to deal with inference, classifica-
tion, and decision making problems (Aguilera et al., 2011). As a result,
they are becoming increasingly popular in fields such as environmental
science (Aguilera et al., 2011; Uusitalo, 2007), ecology (Landuyt et al.,
2013), water resources management (Batchelor and Cain, 1999), and
agriculture (Cain et al., 2003); and they have also been employed in
geotechnical engineering (Huang et al., 2012; Jimenez-Rodriguez and
Sitar, 2006;Medina-Cetina andNadim, 2008; Peng et al., 2014; Schubert
et al., 2012; Song et al., 2012; Sousa and Einstein, 2012; Špačková et al.,
2013; Xu et al., 2011; Zazzaro et al., 2012; Zhang et al., 2011).

This study aims to develop a Bayesian network and, specifically, a
Naïve Bayes classifier, to probabilistically predict the occurrence of
squeezing in rock tunnels for which (sometimes incomplete) informa-
tion is available. The main advantage of BNs with respect to previous
approaches, such as those listed in Table 1, is that BNs are particularly
useful for dealing with two situations that are common with tunnel
squeezing: (i) they can deal with incomplete input information,
i.e., missing data (Uusitalo, 2007); and (ii) they are able to provide

Engineering Geology 195 (2015) 214–224

⁎ Corresponding author.
E-mail address: rafael.jimenez@upm.es (R. Jimenez).

http://dx.doi.org/10.1016/j.enggeo.2015.06.017
0013-7952/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Engineering Geology

j ourna l homepage: www.e lsev ie r .com/ locate /enggeo

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enggeo.2015.06.017&domain=pdf
http://dx.doi.org/10.1016/j.enggeo.2015.06.017
mailto:rafael.jimenez@upm.es
http://dx.doi.org/10.1016/j.enggeo.2015.06.017
http://www.sciencedirect.com/science/journal/00137952
www.elsevier.com/locate/enggeo


good estimates based on limited data sets (Kontkanen et al., 1997; Sen
et al., 2012). In other words, they are still able to make predictions
even in cases inwhich – as often happens in tunnel engineering practice
– information is scarce or incomplete at early design stages. This also has
advantages when data are gathered to construct a database of case his-
tories, as case histories from different authors or from different sources
tend to emphasize different aspects of the tunnel project. To conduct
our analyses, a database of squeezing case histories was compiled and
employed to “learn” the Naïve Bayes classifier that predicts, with the
aid of the Junction Tree algorithm, the probabilities of squeezing. Finally,
the predictions of the proposedNaïve Bayes classifier have been validat-
ed using 10-fold cross-validation, as well as an additional set of tunnel
case histories that was not included in the original database; and a sen-
sitivity analysis is conducted to assess the importance of the input pa-
rameters considered on the squeezing outcome.

2. Parameters employed for analysis and database description

2.1. Parameters related to tunnel squeezing

Based on the literature review conducted (see the list of references),
and also on the parameters considered by common methods to predict
squeezing (Table 1), five main parameters that might influence squeez-
ing are identified and employed in our analyses: tunnel depth (H), Rock
Tunneling Quality Index (Q), tunnel span or diameter (B or D), support
stiffness (K), and stress strength ratio (SSR). In addition, there are other
parameters – rockmass strength (σcm), specificweight of rockmass (γ),
and support pressure (pi) – that, when available, are included in the da-
tabase, although they are not included in the developed BN. The reasons
are that (i) some of them (such as γ) are not very variable and their in-
fluence within typical ranges of variability is limited; and (ii) some of
them (such as σcm and pi) are not commonly available at design stage.

2.2. Description of the database

We conducted a literature review of rock tunneling case histories in
which the occurrence (or absence) of squeezing has been reported. The
database contains 166 cases from 30 projects located in 7 countries,
among which 109 are squeezing cases and 57 are non-squeezing
cases. The database includes fields for all the eight parameters affecting
squeezing that were discussed above, although some of the case
histories included in the database are “incomplete”, i.e., they do not
report information about all fields. However, note that we are still able
to “extract” information from them, given the ability of the BN approach
to learn from case histories with “incomplete” information.

Fig. 1 shows the histograms, cumulative distribution functions
(CDF's), and additional statistics – number of known data and missing

data, maximum and minimum values, means and standard deviations –
of the five parameters considered to predict squeezing with the BN
(i.e., H, Q, D, K, and SSR). It can be seen in Fig. 1 that our database
contains data covering a wide range of values for these five parameters,
hence having in principle a wide range of applicability that is, of course,
limited to the range of available input data. Our database is made avail-
able to readers as Supplementary material to this article (Appendix A.)

2.3. Inputs in the BN

2.3.1. Tunnel depth (H)
Almost all methods to predict squeezing (Table 1) consider tunnel

depth (H) or in-situ stress (often estimated as p0 = γH). This indicates
that tunnel depth is an important parameter to predict tunnel squeez-
ing. Values of tunnel depth are commonly reported in the literature,
and all the H values corresponding to case histories in our database
are known (none is missing).

2.3.2. Rock Tunneling Quality Index (Q)
The Rock Tunneling Quality Index (or Q-system proposed by Barton

et al., 1974) has been often used as input to predict tunnel squeezing
(Basnet, 2013; Jimenez and Recio, 2011; Singh et al., 1992). Q values
for many histories (136 out of 166) could be collected from the litera-
ture but, for 28 cases, RMR values are reported instead of Q values.
Then, the empirical correlation proposed by Barton (1995), i.e., Q =
10(RMR − 50) / 15, has been used to estimate Q values based on RMR. In
addition, there are two tunnels with unknown Q or RMR values.

2.3.3. Tunnel span or diameter (B or D)
The size of the tunnel, as given by its span or diameter (B or D), also

influences squeezing (Goel, 1994). Therefore, we consider tunnel
diameter – or, when the tunnel is non-circular (Dwivedi et al., 2013),
its “equivalent diameter” given by D ¼ ffiffiffiffiffiffiffiffiffiffiffi

4A=π
p

, with A being its cross-
sectional area – as one of the parameters to predict tunnel squeezing
with the BN. Tunnel diameters are commonly reported in the literature,
and only one of them is unknown (missing) in all case histories
considered in the database.

2.3.4. Support stiffness (K)
Installing an adequate support at an appropriate time may reduce

tunnel deformation. In other words, deformation of squeezing tunnels
is influenced by the support systems installed within the tunnel, so
that, for instance, Dwivedi et al. (2013) has recently employed support
stiffness as one of the parameters to estimate the deformation of
squeezing tunnels. In this study, we also use support stiffness to predict
squeezing with the BN. About a third of the case histories in our

Table 1
A summary of previous approaches to predict tunnel squeezing.

Proposed by Approaches Required parameters Sources Type Eq. #

Jethwa et al. (1984) Nc = σcm/γH ≤ 2.0; σcm = 2cpcosϕp/(1 − sinϕp) σcm, γ, and H – Semi-empirical (1)
Singh et al. (1992) H ≥ 350Q1/3 H and Q 39 case histories Empirical (2)
Goel et al. (1995) H ≥ 270 N0.33 · B−0.1 with N = (Q)SRF = 1 H, N, and B 72 cases histories Empirical (3)
Aydan et al. (1993) α = σc/γH ≤ 2.0 σc, γ, and H Cases from Japan tunnels Semi-empirical (4)
Barla (1995) σcm/γH ≤ 1.0 σcm, γ, and H – Semi-empirical (5)
Bhasin and Grimstad (1996) σθ/σcm ≥ 1.0 with σcm = 0.7γQ1/3 σcm and σθ Tunnel case histories Semi-empirical (6)
Hoek and Marinos (2000) ε = (0.002–0.0025pi/p0) · (σcm/p0)(2.4pi/p0– 2) ≥ 1% with σcm =

0.0034mi
0.8 · σci · [1.029 + 0.025exp(−0.1mi)]GSI

pi, p0, and σcm Monte Carlo simulations Semi-empirical (7)

Hoek (2001) σcm/p0 = σcm/γH ≤ 0.35 σcm, γ, and H Cases from 16 tunnels Semi-empirical (8)
Hoek (2001) ε% = 0.15(1 − pi/p0) · (σcm/p0)−(3pi/p

0
+ 1)/(3.8p

i
/p
0
+ 0.54) ≥ 1(%) pi, p0, and σcm Finite-element models Semi-empirical (9)

Jimenez and Recio (2011) H ≥ 424.4Q0.32 H and Q 62 case histories Empirical (10)
Dwivedi et al. (2013) ε = (0.0191σvQ

−0.2) / (K + 1) + 0.0025 ≥ 1% with σv = 0.027H σv, Q, and K 63 case histories Empirical (11)

Notation:Nc (or α) competency factor (also called “strength stress ratio (SSR)”), σcm rockmass uniaxial compressive strength (MPa), γ rockmass specific weight (MN/m3), H overburden
or depth of tunnel (m), cp rock mass peak cohesion (MPa), ϕp rock mass peak friction angle (degree), Q Rock Tunneling Quality Index, N rock mass number (or stress-free Q), SRF stress
reduction factor, B tunnel span or diameter (m), σc uniaxial compressive strength of intact rock (MPa), σθ tangential stress (MPa), ε percentage strain (ratio of tunnel closure to tunnel
diameter), p0 in situ vertical stress at tunnel depth (MPa), pi internal support pressure (MPa),mi Hoek–Brown constant, GSI Geological Strength Index, σv vertical in situ stress (MPa),
K support stiffness (MPa).
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