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This paper proposes a non-intrusive stochastic finite element method for slope reliability analysis considering
spatially variable shear strength parameters. The two-dimensional spatial variation in the shear strength param-
eters is modeled by cross-correlated non-Gaussian random fields, which are discretized by the Karhunen–Loève
expansion. The procedure for a non-intrusive stochastic finite element method is presented. Two illustrative
examples are investigated to demonstrate the capacity and validity of the proposed method. The proposed
non-intrusive stochastic finite element method does not require the user to modify existing deterministic finite
element codes, which provides a practical tool for analyzing slope reliability problems that require complex finite
element analysis. It can also produce satisfactory results for low failure risk corresponding tomost practical cases.
The non-intrusive stochastic finite element method can efficiently evaluate the slope reliability considering
spatially variable shear strength parameters, which is much more efficient than the Latin hypercube sampling
(LHS) method. Ignoring spatial variability of shear strength parameters will result in unconservative estimates
of the probability of slope failure if the coefficients of variation of the shear strength parameters exceed a critical
value or the factor of slope safety is relatively low. The critical coefficient of variation of shear strength parameters
increases with the factor of slope safety.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the spatial variability of soil properties has received
considerable attention in slope stability analysis. Many investigators
have contributed to this subject (e.g., Griffiths and Fenton, 2004; Cho,
2007; Low et al., 2007; Srivastava and Sivakumar Babu, 2009; Cho,
2010; Srivastava et al., 2010; Griffiths et al., 2011; Wang et al., 2011;
Cho, 2012; Ji et al., 2012; Li et al., 2013c; Zhu and Zhang, 2013). For ex-
ample, Griffiths and Fenton (2004) studied the effect of spatial variabil-
ity of undrained shear strength on the probability of slope failure using
random finite element method. Cho (2007) investigated the effect of
spatially variable soil properties on the slope stability using direct
Monte Carlo simulations (MCS). Low et al. (2007) proposed a practical
EXCEL procedure to analyze slope reliability in the presence of spatially
varying shear strength parameters. Srivastava and Sivakumar Babu
(2009) quantified the spatial variability of soil parameters using field
test data and evaluated the reliability of a spatially varying cohesive–
frictional soil slope. Cho (2010) investigated the effect of spatial

variability of shear strength parameters accounting for the correlation
between cohesion and friction angle on the slope reliability. Srivastava
et al. (2010) investigated the effect of spatial variability of permeability
parameter on steady state seepage flow and slope stability. Griffiths
et al. (2011) performed a probabilistic analysis to explore the influence
of spatial variation in the shear strength parameters on the reliability of
infinite slopes.Wang et al. (2011) developed a subset simulation-based
reliability approach for slope stability analysis considering spatially var-
iable undrained shear strength. Ji et al. (2012) adopted the First Order
Reliability Method (FORM) coupled with a deterministic slope stability
analysis to search the critical slip surface when the spatial variability in
the shear strength parameters is considered.

In the majority of these studies, the traditional limit equilibrium
method (LEM) is used to perform deterministic slope stability analyses.
Then, the LEM is combinedwith random field theory for slope reliability
analysis considering spatially variable soil properties. Thereafter, Monte
Carlo Simulation is used to evaluate the probability of slope failure. A
potential pitfall of the LEM is that some assumptions relating to the
shape or location of the critical failure mechanism have to be made.
Also, it does not account for the stress–strain behavior of the soil. Addi-
tionally, the spatial variability of soil properties cannot be considered
realistically with the LEM-based methods, unless the shape of the slip
surface is non-circular (Tabarroki et al., 2013). Fortunately, finite element
based methods provide solutions to overcome the aforementioned
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shortcomings underlying the traditional LEM (Farias and Naylor, 1998;
Griffiths and Fenton, 2004). As for the slope reliability evaluation, al-
though the direct MCS is simple and suitable for evaluating the probabil-
ity of slope failure in the presence of spatially variable shear strength
parameters, the time and resources required for theMCS could be prohib-
itive because a substantial number offinite elementmodel runs are need-
ed to obtain reliability results with a sufficient accuracy. The resultant
computational efforts aremost pronounced at relatively small probability
levels or when complex finite element analyses are needed for slope
stability analysis. Traditional stochastic finite element methods require
significant modification of existing deterministic numerical codes, and
becomenearly impossible formost engineerswith no access to the source
codes of commercial software packages (Ghanem and Spanos, 2003;
Stefanou, 2009). Therefore, it is necessary to explore more efficient
methods for slope reliability analysis, which considers spatially variable
shear strength parameters and requires complex finite element analysis
for determining the factor of safety.

The objective of this paper is to propose a non-intrusive stochastic
finite elementmethod for slope reliability analysis considering spatially
variable shear strength parameters. To achieve this goal, this article
is organized as follows. In Section 2, the two-dimensional (2-D) spatial
variation of the shear strength parameters is modeled by cross-
correlated non-Gaussian random fields, which are discretized by the
Karhunen–Loève (KL) expansion. In Section 3, the procedure of a non-
intrusive stochastic finite element method is presented. Two examples
of slope reliability analysis are investigated to demonstrate the capacity
and validity of the proposed method in Section 4.

2. Random field modeling of soil property

2.1. Spatial variability of soil property

A Gaussian random field is completely defined by its mean μ(x),
standard deviation σ(x), and autocorrelation function ρ(x1, x2). The
autocorrelation function is an important physical quantity for character-
izing the spatial correlation of soil properties (Vanmarcke, 2010). In this
study, a squared exponential 2-D autocorrelation function is adopted
with different autocorrelation distances in the horizontal and vertical
directions as follows:

ρ x1; y1ð Þ; x2; y2ð Þ½ � ¼ exp − x1−x2j j
lh

� �2
þ y1−y2j j

lv

� �2� �� �
ð1Þ

where (x1, y1) and (x2, y2) are the coordinates of two arbitrary points in
a 2-D space; and lh and lv are the autocorrelation distances in the hori-
zontal and vertical directions, respectively.

2.2. Karhunen–Loève (KL) expansion

Several methods such as the midpoint method (Der Kiureghian and
Ke, 1988), the local average subdivision (LAS) method (Vanmarcke,
2010), the shape function method (Liu et al., 1986) and the KL expan-
sion (Phoon et al., 2002) can be used to discretize the random field.
Since the KL expansion requires the minimum number of random
variables for a prescribed level of accuracy, it is employed to
discretize the 2-D anisotropic random fields of shear strength parame-
ters. To facilitate the understanding of the proposed non-intrusive sto-
chastic finite element method, the KL expansion is introduced briefly
in the following.

A random field H(x, θ) is a collection of random variables associated
with a continuous index x ∈ Ω p Rn, where Ω is an open set of Rn de-
scribing the system geometry and θ∈Θ is the coordinate in the outcome
space. Discretization of a random field using the KL expansion is based
on the spectral decomposition of its autocorrelation function ρ(x1, x2).
Generally, the autocorrelation function is bounded, symmetric and
positive definite. Hence, the discretization of a random field is defined

by the eigenvalue problem of the homogenous Fredholm integral equa-
tion as follows:

Z
Ω
ρ x1; x2ð Þ f i x2ð Þdx2 ¼ λi f i x1ð Þ ð2Þ

where x1 and x2 denote the coordinates of two points; fi(·) and λi are the
eigenfunctions and eigenvalues of the 1-D autocorrelation function
ρ(x1, x2), respectively. Then, the eigenmodes of the separable multi-
dimensional autocorrelation function are calculated by multiplying
with the eigenmodes obtained from Eq. (2) (e.g., Huang, 2001).

The eigenvalue problem of the Fredholm integral equation in Eq. (2)
is often solved numerically due to its complexity. The wavelet-Galerkin
technique is adopted herein to solve the above eigenvalue problem.
More details are given by Phoon et al. (2002). The series expansion of
a 2-D random field Hi(x, y) is expressed as

Hi x; yð Þ ¼ μ i þ
X∞
j¼1

σ i

ffiffiffiffiffi
λ j

q
f j x; yð Þξi; j; x; y∈Ω ð3Þ

where ξi,j is a set of orthogonal random coefficients (uncorrelated ran-
dom variables with zero mean and unit variance). The series expansion
in Eq. (3), referred to as the KL expansion, provides a second-moment
characterization in terms of uncorrelated random variables and deter-
ministic orthogonal functions. It is known to converge in the mean
square sense for any distribution of Hi(x, y) (e.g., Vořechovský, 2008).
For practical implementation, the series is approximated by a finite
number of terms in Eq. (3):

eHi x; yð Þ ¼ μ i þ
Xn
j¼1

σ i

ffiffiffiffiffi
λ j

q
f j x; yð Þξi; j; x; y∈Ω ð4Þ

where n is the number of KL expansion terms to be retained, which
highly depends on the desired accuracy and the autocorrelation func-
tion of the random field. Small values of the autocorrelation distances
will lead to a significant increase in the number of the eigenmodes, n.
Several studies (Huang, 2001; Laloy et al., 2013) took the ratio of the ex-
pected energy, ε, as a measure of the accuracy of the truncated series,
which is defined as

ε ¼
Z

Ω
E eHi x; yð Þ−μ i

� �2
dxdy=

Z
Ω
E Hi x; yð Þ−μ ið Þ

2
dxdy

¼
Xn
i¼1

λi=
X∞
i¼1

λi ð5Þ

where the eigenvalues λi are sorted in a descending order. A large ε al-
ways indicates a high accuracy of the truncated series.

2.3. Cross-correlated non-Gaussian random fields

In geotechnical engineering practice, very often more than one geo-
technical parameter needs to be modeled by random fields. Further-
more, the geotechnical engineering literature is replete with cross-
correlations between two geotechnical parameters. For example, the
two curve-fitting parameters underlying load–displacement curve of
piles are negatively correlated (Li et al., 2013b). The cohesion and fric-
tion angle, often used for slope reliability analysis, are considered to
be negatively correlated (e.g., Lumb, 1970; Wolff, 1985; Cho, 2010;
Tang et al., 2013). In this case, the cross-correlated random fields need
to be handled. Following Cho (2010), it is assumed that all fields simu-
lated over a regionΩ share an identical autocorrelation function overΩ,
and the cross-correlation structure between each pair of simulated
fields is simply defined by a cross-correlation coefficient. It can ensure
that the target random fields respect the correlation structure within
each field (Vořechovský, 2008). The rationale underlying these assump-
tions has been explained by Fenton and Griffiths (2003). Under these
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