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The limited amount of data available in geotechnical practice makes it difficult to identify a unique probability
model for the joint distribution of uncertain variables. Yet, the calculated failure probability can be sensitive to
the probability model used, even if different models are calibrated based on the same data. The model selection
uncertainty is a poorly understood area of research in current geotechnical practice. In this study, we show how
to construct candidate probability models based upon the copula theory to more realistically model the soil data
with explicit consideration of the possible non-linear dependence relationship between random variables. The
authors used a Bayesian method to quantify the model selection uncertainty and to compare the validity of the
candidate models. A model averaging method that combines predictions from competing models was then
developed to deal with the situation when the effect of model selection uncertainty cannot be neglected.
Averaging over the reliability index seems more plausible than averaging over the failure probability in geotechnical
reliability analyses. To reduce the computational work, models with significantly less model probabilities can be

removed from the model averaging process without an obvious effect on the prediction accuracy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As probability-based methods provide a more rational basis for
treating uncertainties, the probabilistic modeling of geotechnical prob-
lems has been the subject of much research (e.g., Tang, 1984;
Whitman, 1984; Rackwitz, 2000; Ching et al., 2009; Griffiths et al.,
2011; Zhang et al., 2011; Ahmed and Soubra, 2012; Uzielli and Mayne,
2012; Duncan, 2013; Zhu and Zhang, 2013). While its usefulness is
now well known, the dilemma of the practical application of probabilis-
tic methods is that the site-specific data available for geotechnical
reliability analysis are often limited (Christian, 2004; Zhang et al.,
2004; Wang and Cao, 2013), which could be insufficient for identifying
a unique probability model for the joint distribution of uncertain soil
properties. In practice, the selection of a specific probabilistic model
often involves subjective decisions with several options (Beer et al.,
2013). If the lack of information is very severe, for example, when
only bounds are known for parameters involved in the mechanical
problem, non-probabilistic methods such as interval analysis and
fuzzy modeling have been sought for uncertainty quantification and
processing (Degrauwe et al, 2010; Luo et al.,, 2011; Beer et al., 2013).

In geotechnical engineering, the joint distribution of random
variables is often determined based on the marginal distributions and
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a correlation matrix. In recent years, substantial progress has been
made in modeling multivariate data based on the copula theory
(e.g., Cherubini et al., 2004; Trivedi and Zimmer, 2005; Nelsen, 2006),
in which a copula function instead of the correlation matrix is used to
represent the dependence relationship among random variables. As
shown in Boardman and Vann (2011), as the copula function varies,
there could be multiple joint distributions corresponding to the same
marginal distributions and the same correlation matrix. Li and his
coauthors pioneered the application of the copula theory in a number
of geotechnical reliability problems (Li et al., 2013; Tang et al., 20133,
b,c). Their study shows that previous probability models used in geo-
technical engineering such as multivariate normal distribution is indeed
based on the Gaussian copula, which can only consider the linear
dependence relationship between random variables and may not al-
ways be optimal. Therefore, it is important to consider other copula
functions for constructing probability models in geotechnical reliability
analysis.

While the copula theory provides a flexible tool to model the
geotechnical data more realistically, it further complicates the model
selection problem, i.e., it is necessary to select not only the marginal dis-
tributions but also the copula function. In practice, a single probability
model is often chosen based the best available knowledge, and the fail-
ure probability is thus calculated based on the selected probability
model ignoring the model selection uncertainty. Yet, the calculated fail-
ure probability could be sensitive to the probability model adopted
(e.g., Tang et al., 2013a). However, the model selection uncertainty is
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rarely considered in current geotechnical reliability analysis, and how to
address the model selection uncertainty problem remains a problem.
The cohesion and the friction angle are two common uncertain
variables in many geotechnical problems. Using shear strength data as
an example, we propose a method of reliability analysis that explicitly
considers the model selection uncertainty. The results from a reliability
analysis could be the statistics of a system response or the failure
probability/reliability index. As an illustration, in this study our focus is
on failure probability/reliability index. We will first introduce our method
of constructing the probability models for shear strength parameters
based on the copula theory. Next, a description of our method of evaluat-
ing and incorporating model selection uncertainty in the failure probabil-
ity calculation is presented. Finally, we provide two examples of our
proposed method for investigating the model selection uncertainty and
its effect on reliability analysis. Although we use the shear strength data
to illustrate the proposed method, it is equally applicable to other soil
data types when model selection uncertainty needs to be addressed.

2. Constructing of candidate probability models
2.1. Modeling a joint distribution based on the copula theory

In many reliability problems, such as the bearing capacity of shallow
foundations (e.g., Wang, 2011; Juang and Wang, 2013), the stability of
earth slopes (e.g., Zhang et al., 2010, 2013; Huber et al., 2011; Salgado
and Kim, 2014), the design of retaining structures (e.g., Zevgolis and
Bourdeau, 2010; Low et al., 2011), the cohesion and the friction angle
are often treated as random variables. It is a common practice to
model the cohesion and the friction angle as either normal or lognormal
variables (Lumb, 1970; Cherubini, 2000). A correlation coefficient is
often used to describe the dependence between the cohesion and the
friction angle (e.g., Harr, 1987; Cherubini, 1997). Though a negative
correlation between the cohesion and the friction angle is the usual
outcome in such modeling, a positive correlation between the cohesion
and the friction angle also occurs (e.g., Wolff, 1985). A single correlation
coefficient cannot describe the possible non-linear dependence
relationship between random variables, however (e.g., Boardman and
Vann, 2011). In this study, the authors constructed the joint distribution
of the cohesion and the friction angle based on the copula theory, as
described below.

Let x; and x, denote the cohesion and the friction angle, respectively.
Let F;(x;) and F»(x,) denote the cumulative distribution function (CDF)
of x; and x,, respectively. Let F(xq, x,) denote the joint CDF of {x1, x5}.
Based on Sklar's theorem (Sklar, 1959), if x; and x, are continuous
variables, F(x;, X») can be written as follows

F(xq,%y) = K[F1(x1), F5(%), 6] (1)

where K(u4, Uy, 0) is a copula function with u; = F;(x;) and u, = F>(x3),
and 0 is a parameter of the copula function. Eq. (1) shows that the joint

distribution of x; and x, decomposes into two parts: the marginal
distributions and the copula function, as several commonly used copula
functions in Table 1 indicate. In this table, the Gaussian copula is the
copula associated with the bivariate normal distribution, and thus is
the dependence function implicitly assumed in the bivariate normal
distribution. The Clayton copula can be used to model data with strong
left tail dependence and relatively weak right tail dependence.
Compared with the Gaussian copula, the dependence in the tails of the
Frank copula tends to be relatively weak, and the strongest dependence
is centered. The FGM is often attractive due to its simplicity, and it is
most useful when dependence between the two marginal distributions
is modest in magnitude. The Plackett copula exhibits less tail
dependence than the Gaussian copula. In addition to the above general
descriptions, different copula models differ in detail as represented by
their mathematical expressions. One can refer to Cherubini et al.
(2004), Trivedi and Zimmer (2005), and Nelsen (2006) for more
about the characteristics of different copula models.

Based on Eq. (1), the joint probability density function (PDF) of x;
and x; can be expressed as:

Fx1,%5) = K[F1(X1), F2(%), 01f1 (1) f2(x2) (2)

where k(uq, Uy, 0) is the density function of K(uy, uy, 0) defined as
follows

PK(uy,u,,6)

k(ul7u276) = au]auz
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The density functions of several copula functions are also shown in
Table 1. Eq. (2) can be used to construct the PDF of the joint distribution
of {x, xo}. For instance, if it is assumed that the marginal distributions
are normal and that copula function is Clayton, the joint PDF of x; and
X, is expressed as

-2
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where f;(x;) and F;(x;) in this case are the PDF and CDF of x; (i = 1, 2),
respectively, and both are PDF of normal variables.
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2.2. Maximum likelihood calibration of model parameters

Let 1; and 0; denote the mean and the standard deviation of x;, (i =1,
2), respectively. In the bivariate distribution constructed based on the
copula theory for shear strength parameters, the parameters to be
calibrated include pt4, 0y, ft5, 03, and 6. Let d = {d;, d»} denote a mea-
surement of {x;, x,}. Let d!, d?, d>, ..., d" denote n measurements of
{x1, x2}. For ease of presentation, let ® = {1, 03, b, 03, 0} and D =

Table 1

Summary of several commonly used copula functions.
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