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Substantial effort has been invested to understand where seismically induced landslides may occur in the future, as
they are a costly and frequently fatal threat in mountainous regions. The goal of this work is to develop a statistical
model for estimating the spatial distribution of landslides in near real-time around the globe for use in conjunction
with the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system. This
model uses standardized outputs of ground shaking from theUSGS ShakeMapAtlas 2.0 to develop an empirical land-
slide probability model, combining shaking estimates with broadly available landslide susceptibility proxies, i.e., to-
pographic slope, surface geology, and climate parameters.We focus on four earthquakes forwhich digitallymapped
landslide inventories andwell-constrained ShakeMaps are available. The resulting database is used to build a predic-
tive model of the probability of landslide occurrence. The landslide database includes the Guatemala (1976),
Northridge (1994), Chi-Chi (1999), and Wenchuan (2008) earthquakes. Performance of the regression model is
assessed using statistical goodness-of-fit metrics and a qualitative review to determine which combination of the
proxies provides both the optimum prediction of landslide-affected areas and minimizes the false alarms in non-
landslide zones. Combined with near real-time ShakeMaps, these models can be used to make generalized predic-
tions of whether or not landslides are likely to occur (and if so, where) for earthquakes around the globe, and even-
tually to inform loss estimates within the framework of the PAGER system.

Published by Elsevier B.V.

1. Introduction

Seismically induced landslides present costly and often deadly threats
in many mountainous regions. Approximately 5% of all earthquake-
related fatalities are caused by seismically induced landslides, in some
cases causing a majority of non-shaking deaths (Marano et al., 2009).
Substantial effort has been invested to understandwhere such landslides
may occur in the future. Though some regional efforts have succeeded, no
uniformly agreed-upon method is available for predicting the likelihood
and spatial extent of seismically induced landslides. This study uses
deterministic estimates of the ground motion from earthquake events
(e.g., peak acceleration and velocity) produced by the U.S. Geological Sur-
vey (USGS) ShakeMap system (Allen et al., 2008; Garcia et al., 2012), com-
bined with broadly available landslide susceptibility proxies (such as
topographic slope and surface geology) to build a predictive model of
the probability of landslide occurrence at a given location. The approach
that we apply to landslides is similar to the strategy that Zhu et al. (in

press) applied to liquefaction. We apply a logistic regression analysis
(Peng et al., 2002) to a series of training events with well constrained
ground shaking and landslide distribution data, which provide empirical
observations to the model. The performance of the regression model
is assessed with both statistical goodness-of-fit metrics and a quali-
tative review of the model's capability to capture the spatial extent
of landslides for each training event, as well as for one test event
(Niigata-Chuetsu, Japan, 2004) that was not used in the regression
model. Combined with near real-time ShakeMaps, the model may
be used to make generalized predictions of whether or not (and if
so, where) landslides are likely to occur for earthquakes around the
globe. The long-term goal is to incorporate this functionality into
the USGS Prompt Assessment of Global Earthquakes for Response
(PAGER) system (Earle et al., 2009).

2. Modeling methodology

The main objective of landslide hazard modeling is to predict areas
prone to landslides either spatially or temporally (Brenning, 2005);
here, we focus on short-term prediction of the spatial pattern of land-
slides triggered by an individual earthquake. Common approaches
include both slope-stability methods, which incorporate physical
models of landslide susceptibility, and statistical approaches, based on
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empirical observations of landslide occurrence. Among the physical
models the most prominent are methods relying on “Newmark dis-
placement calculations,” as developed by Newmark (1965), based on a
simplified physical model representing the force balance of a landslide
block sliding over an inclined slide plane. Studies applying this slope-
stability method to landslide predictions include Jibson (1993), Jibson
et al. (2000), and Kaynia et al. (2011). Statistical approaches to model-
ing seismically induced landslides have also been applied inmany stud-
ies, including Jibson (2007), García-Rodríguez et al. (2008), Felicísimo
et al. (2012), and Li et al. (2012). Both mechanical and statistical
methods typically involve creation of a long-term landslide susceptibil-
ity map as their end product, and are usually focused on a small region
where data are available at a relatively fine resolution. Both Li et al.
(2012) and Kaynia et al. (2011) incorporate outputs from the ShakeMap
system in their models, with their end product being a long-term
landslide susceptibility map for their study areas.

Logistic regression is the dominant statistical technique currently
used to predict landslides in the literature (Rennie, 2003). Logistic re-
gression is appropriate for a process involving only a binary outcome
(in this case, slide or no slide), and allows the observed outcomes to
be fitted to the logistic function using data representing multiple
predictor variables. The logistic function is given by

Logit Pð Þ ¼ ln p= 1−pð Þð Þ ¼ aþ bx1þcx2 þ dx3 þ…; ð1Þ

where x1, x2 and x3 are the explanatory variables; and a, b, c, and d are
the coefficients determined in the regression. The probability of a partic-
ular outcome is represented as

p tð Þ ¼ 1= 1þ exp −zð Þð Þ; ð2Þ

where z = a + bx1 + cx2 + dx3 + ….
The Akaike Information Criterion (AIC) is a statistical measure used

to represent the goodness of fit of a model to the data with which it
was trained:

AIC ¼ −2 � ln mð Þ þ 2 � nð Þ ð3Þ

wherem represents themaximum likelihood term and n the number of
parameters in the model. The AIC value is dependent on the fit of the
model estimates to the data (given by the maximum likelihood term),
and the number of parameters the model contains. The AIC value
decreases with better model fit, but increases with complexity of the
model. In searching for the best fittingmodel for a given suite of param-
eters we then use the lowest AIC value (Akaike, 1987).

Comparisons of statistical methods previously used to model land-
slide hazards (Brenning, 2005) concluded that logistic regression results
in the lowest rate of error. This study therefore uses logistic regression
analysis as the main method for modeling seismically induced
landslides.

Although the method of logistic regression has been widely used, a
majority of the literature offers no broader geographic application of

the technique than those developed within local projects, such as a
model applicable to an area surrounding a city or within one country.
The input of the shaking hazard varies from project to project, while
two end products are commonly associated with these studies—either
a landslide susceptibilitymap for a regionbased on shakingdue to a par-
ticular earthquake, or a long-term landslide susceptibility map based on
probable exposure to a specified amount of seismic shaking. Despite al-
ternate end goals, many times no method is provided to test how well
the model is performing. This study seeks to address these large gaps
in the literature in order to present a globally applicable, short-term,
deterministic estimate of the likelihood of landslides associated with a
particular event.

2.1. Predictor variables

The spatial distribution of seismically induced landslides is depen-
dent on certain physical characteristics of the area in which they
occur. Empirical studies suggest that the bedrock lithology, slope, seis-
mic intensity, topographic amplification of groundmotion, fracture sys-
tems in the underlying bedrock, groundwater conditions, and also the
distribution of pre existing landslides all have some impact on the land-
slide distribution, among other factors (Keefer, 2002). Predictor vari-
ables to test in the regression are chosen based on the relationships
shown in previous studies, as well as the availability of global datasets
that can be used as proxies for each of the studied variables.

Based on these guidelines, we include the following predictor vari-
ables in the regression: groundmotion produced by the earthquake, to-
pographic slope, material strength, and soil wetness. These variables
will be compared with the spatial distribution of mapped landslides
that occurred due to shaking produced in that particular event.

2.1.1. Landslide data
Mapped landslide data are available from various researchers in the

field of earthquake-induced landslide research. Multiple methods are
used to map landslides; these include field-based mapping of observed
landslide deposits, and remote sensing techniques (such as mapping
landslide deposits from satellite images). As our study uses an empirical
model, a small number of case histories in the landslide literature are
used to build the database of landslide observations that are used in
the regression. These events have been selected based on the high qual-
ity and availability of data for these events (see Garcia et al. (2012) for
further detail on case history characteristics). We focus first on using
the Wenchuan, China (2008) earthquake, with data from the Chi-Chi,
Taiwan (1999), Northridge, California (1994), Niigata-Chuetsu, Japan
(2004), and Guatemala (1976) events incorporated during later stages
of model testing. Table 1 provides a brief overview of each earthquake
included in the database. The inventories are classified as complete
or comprehensive, where complete indicates that all of the landslides
were mapped only for a specified study area, and comprehensive
indicates that all of the landslides were mapped that exceed a
specified size. The estimated extent of shaking for each event is

Table 1
Summary of earthquake-induced landslides.

Earthquake Date Year Time
(UTC)

M Depth
(km)

EQ
type

Inventory
type

No. of landslide
obs.

% (of cells)
w/ landslide

Fatalities Landslide
fatalities

Ref.

Guatemala 4-Feb 1976 9:01 7.5 12.3 SS C 6212 28.2 23,000 Unknown 1
Northridge (California) 17-Jan 1994 12:30 6.7 19 T C* 11,111 20.1 61 Unknown 2
Chi-Chi (Taiwan) 20-Sep 1999 17:47 7.7 21 T C* 9272 14.9 2465 78 3
Chuetsu (Japan) 23-Oct 2004 08:56 6.6 16 T C 4615 76.7 68 6 4
Wenchuan (China) 12-May 2008 06:28 7.9 19 T C* 197,481 12.0 87,633 20,000 5
Global 228,691 13.1 113,227 20,084

M=Magnitude. Earthquake type: SS = Strike-slip, T = Thrust.
Inventory type: C = Complete; C* = Comprehensive.
References: 1: Harp et al. (1981); 2: Harp and Jibson (1996); 3: Liao and Lee (2000); 4: Sekiguchi and Sato (2006); 5: Dai et al. (2011).
Fatalities as reported in the Global Earthquake Model Earthquake Consequences Database (GEM ECD; http://gemecd.org).
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