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Current dominant methods for slope stability analysis are the limit equilibriummethod and the strength reduc-
tion method. Both methods are based on the limit equilibrium conditions. However, the limit equilibrium
methods are limited to the rigid body assumption, while the strength reduction method is computationally
expensive and has convergence issues due to the non-linear iterative computations. In this paper, we propose
a current stress-based search algorithm to directly obtain the critical slip surface and the safety factor. The numer-
icalmanifoldmethod,which unifies the continuumand discontinuumanalysis problems, is used for stress analysis
to obtain the stress distribution of soil slopes or rock slopes cut by joints. Based on the stress results obtained, a
graph theory is used to convert the solution of the critical slip surface to a shortest path problem, which can be di-
rectly solved by the Bellman–Ford algorithm. The proposed method couples the numerical manifold method and
the graph theory allowing for stability analyses of both rock and soil slopeswithin the same framework. Themeth-
od completely removes the computational effort needed for iterations in the strength reductionmethod as well as
eliminating the rigid body assumptions in the limit equilibrium method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A wide range of methods have been proposed to assess stability of
soil or rock slope such as those discussed by Fellenius (1936),
Abramson et al. (2001), Duncan and Wright (2005). Among these
methods, the limit equilibrium methods (LEM) are the most widely
used due to their simple formulation. In the LEMs, the potential sliding
body is discretized into a finite number of rigid slices. Different assump-
tions can be introduced concerning the equilibrium conditions and the
inter-slice forces to make the slope stability problem statically determi-
nate. In the family of LEMs, somewell-knownmethods include those by
Bishop (1955; Bishop modified), Morgenstern–Price (1965), Janbu
(1968) and Sarma (1973). In particular, the Sarma method has been
widely applied in rock slope engineering.

In the past three decades, many researchers such as Chen and
Morgenstern (1983), Lam and Fredlund (1993) and Zhu et al. (2003)
have tried to incorporate various types of LEM into a generalized frame-
work. The LEMs have rigorous theoretical derivations and can provide
the critical slip surface (CSS) directly. However, they are limited by
the rigid body assumption and do not consider the constitutive models
describing the stress–strain relation in the geomaterial. Therefore, the

loading path cannot be modeled (Ching and Fredlund, 1983; Zhu
et al., 2003).

To overcome the limitations of the LEMs, many numerical methods
have been developed for slope stability analysis that are capable of
analyzing more complicated loading conditions, geometries, material
models, slope geometries and multi-field problems. According to
the assumptions of kinematics andmaterialmodels, numericalmethods
at present can be mainly classified into two categories, namely
continuum-based methods and discontinuum-based methods (Jing
and Hudson, 2002). Continuum-based methods are capable of simulat-
ing slopes with few joints where kinematic conditions do not control
the slope behavior. However, continuum-based methods such as the
finite element method (FEM) have been shown ineffective or cumber-
some in modeling joint propagation since the mesh needs to be refined
to cope with the evolving geometries (Zhuang and Augarde, 2010; Zhu
et al., 2011). Singular elements in discontinuities might result in unex-
pected erroneous results and require robust and advanced analysis soft-
ware to ensure numerical simulation with convergence. Element-free
methods have greatly improved the ability to handle essential boundary
conditions and the numerical integration (Zhuang et al., 2011, 2012;
Zhuang and Cai, 2014), but they are still problematic when dealing
with multiple fractures (Ma et al., 2010). Discontinuum-basedmethods
such as the discrete elementmethod (Cundall and Strack, 1979) and the
discontinuous deformation analysis (Shi and Goodman, 1989) are
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capable of simulating discontinuous problems like jointed rock slopes.
However, the efficiency of calculations is low and the parameters need-
ed for calculations are difficult to determine. The numerical manifold
method (NMM) proposed by Shi (1991) is a particular numerical meth-
od that unifies continuum analysis and discontinuum analysis. This
method has attracted attention from many researchers during the past
two decades (Chih and Haw, 1996; Sasaki et al., 1997; Li et al., 2005;
Jiang et al., 2009; Cai et al., 2010; An et al., 2013; Cai et al., 2013). The
NMM is particularly suitable for the stability analysis in both rock and
soil slopes (Ning et al., 2011).

To address the above issues, this paper proposes an effective
searching technique to assess slope stability in the context of NMM by
using a graph theory. First, NMM is used to compute the stress state in
the slope. Second, based on the stresses obtained, a search for the CSS
with the SF is converted to a shortest path problem by appropriately
defining vertexes and edges in the slope model. Finally, the shortest
path problem is solved by the Bellman–Ford algorithm and the CSS is
obtained directly. The combination of NMM and the graph theory
removes the difficulties in iterative calculations and also unifies the
analysis formulation for both rock and soil slopes.

2. Numerical manifold method of modeling discontinuities

Modeling of soil slopes without discontinuities in NMM is identical
to that in the finite element method. For rock slopes with multiple
discontinuities, the NMM uses dual covers to model slopes in a more
natural way since the mathematical cover does not need to conform
to themoving external and internal boundaries such as faults and joints.
With a regular mathematical mesh, the inaccuracies and numerical
instabilities associated with the distortion of element topology can be
alleviated. Hence, another advantage of NMM arises when simulating
fracture propagation without mesh refinement by updating its physical
cover. However, this is beyond the scope of the present paper.

2.1. Basic formulation

In the NMM, a dual cover system is used, which comprises themath-
ematical covers and physical covers. In this paper, a triangular mesh
illustrated in Fig. 1 is firstly used over an example problem domain
denoted as Ω. Notably, the triangular mesh does not need to conform
to the slope boundaries or the material discontinuities. A mathematical
cover denoted as Mi, is defined as a triangular mesh that contains the
mathematical node i where i = 1 to nm and nm is the total number of
mathematical covers used to cover domain Ω. For example, the

mathematical covers M2 and M9 are defined as the unions of elements
connected to nodes 2 and 9, respectively, see Fig. 2. External boundaries
and internal discontinuities divide each mathematical cover into differ-
ent parts. Each part is termed as a physical cover. As shown in Fig. 3(a),
M2 is divided by the external boundary into P2while the domain outside
the external boundary is not considered as a physical cover, see Fig. 3(a).

A manifold element is defined as the overlapping of the physical
covers. In Fig. 3, the manifold element ME239 is generated as the inter-
section of the physical covers P2, P3 and P9. The manifold elements are
used to construct the local displacement approximation functions and
to integrate the elemental stiffness matrix.

Over each mathematical cover Mi, a weight function wi(x,y) is
defined that satisfies the following conditions

wi x; yð Þ≥0; x; yð Þ∈M
wi x; yð Þ ¼ 0; x; yð Þ∉MXn
i

wi x; yð Þ≡ 1; x; yð Þ∈Ω:
ð1Þ

A local displacement approximation function ui(x,y) is defined
on each physical cover Pi. Generally, polynomial functions are used to
represent local displacement characteristics. High order polynomials
can effectively improve the approximation accuracy. However, for sim-
plicity, the local displacement approximation function is set as constant
in this paper.

A global approximation uh(x,y) on eachmanifold elementMEj can be
obtained by the summation of all the local approximation functions of
related physical covers with their corresponding weight functions as

uh x; yð Þ ¼
X
i

wi x; yð Þui x; yð Þ; x; yð Þ∈MEj: ð2Þ

The mathematical covers in the NMM do not need to be identical to
the problem domain, while in the FEM, the mesh has to conform to the
geometry of the problem. The FEMmesh can be viewed as amathemat-
icalmesh that conforms exactly to the domain geometry and in this case
the physical cover and the mathematical cover are identical. This is
actually what has been done in many existing mesh-refinement
techniques found in the FEM software. Like the FEM, the governing
equations in the NMM are the equilibrium conditions, compatibility
equations and constitutive equations, and theweak form can be derived
based on the minimization total potential energy. The elemental stiff-
nessmatrix of eachmanifold element is constructed first. Subsequently,
the elementmatrices are assembled into the global stiffnessmatrix. Dif-
ferent from the FEM, theweight functions in the NMMare independent
of the geometries of the manifold elements.
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Fig. 1. Illustration of the concept of the NMM.
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Fig. 2. Definition of a mathematical cover.
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