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Soil liquefaction during earthquakes can result in ground movements that cause damage to buildings and life-
lines. Lateral spreading is one form of earthquake-induced groundmovements that have caused extensive dam-
age in previous earthquakes. The lateral displacement is dependent on many factors including the earthquake
magnitude, thickness and particle size of the liquefiable subsoils and the depth of the groundwater. A number
of analytical and empirical methods have been proposed to predict the magnitude of the lateral displacement.
One common empirical method is the MLR model which is based on multiple linear regression (MLR) analysis
of a database of observed case histories. It is proposed in this paper to use a nonparametric regression procedure
known asmultivariate adaptive regression splines (MARS), as an improvement to the currentMLRmodel to pre-
dict the liquefaction induced lateral displacement. First the basis of the MARS method and its associated proce-
dures are explained in detail. Results are then presented to show the accuracy of the proposed approach, in
comparison to the commonly used multiple regression approach. Analysis of observed case histories indicated
that the MARS outperforms MLR in terms of predictive accuracy. MARS automatically models non-linearities
and interactions between variables without making any specific assumptions. Furthermore, it is able to provide
the relative importance of the input variables and give insights of where significant changes in the data may
occur.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

During an earthquake, liquefaction occurs in saturated sand de-
posits, due to excess pore water pressure increase. It can cause serious
to destructive damage to structures. The liquefaction mechanism in-
cludes ground subsidence, flow failure and lateral spreading, among
other effects. Lateral spreading involves the movement of relatively in-
tact soil blocks on a layer of liquefied soil towards a free face or down a
gentle slope. It can also induce different forms of ground deformation,
the magnitudes of which range from a few centimeters to several me-
ters. Susceptibility to liquefaction-induced lateral spreading is depen-
dent on a number of factors such as the depth of the groundwater
table, the physical andmechanical properties of the subsoils, and the in-
tensity and duration of the ground shaking. The large number of factors
involved presents challenges in developing simplified analytical solu-
tions to estimate the magnitude of the lateral displacement. A rigorous
numerical model must consider dynamic and three dimensional effects
as well as the anisotropic and heterogeneous nature of liquefiable soil
deposits. Moreover, accurate constitutive modeling of a liquefiable soil
is a difficult problem, even when considerable laboratory testing is un-
dertaken. Such efforts are hampered by the difficulty in obtaining repre-
sentative, “undisturbed” testing samples from the in situ deposit. In

practice, empirical models based on case histories have remained the
more popular assessment method in the past decades.

Various empirical approaches have also been proposed (e.g.,
Hamada et al., 1986; Youd and Perkins, 1987; Bartlett and Youd,
1992a, 1992b, 1995; Shamoto et al., 1998; Bardet et al., 1999, 2002;
Rauch and Martin, 2000; Youd et al., 2002; Zhang et al., 2004; Al
Bawwab, 2005; Zhang and Zhao, 2005; Javadi et al., 2006; Kanibir
et al., 2006; Aydan et al., 2008). Table 1 shows some of the more com-
mon empirical models. The corresponding parameter descriptions are
listed in Table 2.

Themostwidely usedmethod is themultiple linear regression (MLR)
approach originally proposed by Bartlett and Youd (1995) in which two
different site conditions are considered: (1) lateral spread towards a free
face (e.g., river) and (2) lateral spread down gentle ground slopes where
a free face is absent or far away. Based on database records from case his-
tories, empirical models were developed for estimating horizontal
ground displacement from liquefaction-induced lateral spread. The orig-
inal procedure was later revised (Youd et al., 1999). The most updated
version of the equations is as follows (Youd et al., 2002).

For free-face (ff) conditions:

logDh ¼ −16:713þ 1:532M−0:012R−1:406 log R�� �þ 0:592 log Wð Þ
þ0:540 log T15ð Þ þ 3:413 log 100−F15ð Þ−0:795 log D5015 þ 0:1ð Þ

ð1Þ
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and for gently sloping (gs) ground:

logDh ¼ −16:213þ 1:532M−0:012R−1:406 log R�� �þ 0:338 log Sð Þ þ
0:540 log T15ð Þ þ 3:413 log 100−F15ð Þ−0:795 log D5015 þ 0:1ð Þ:

ð2Þ

TheMLRmodel of Youd et al. (2002) is themost commonly used ap-
proach to estimate the liquefaction-induced lateral spread, because of
the simplicity of the mathematical model and the easy interpretability
of the input variables. However, its predictive capacity can only be con-
sidered as satisfactory with a coefficient of determination value R2 of
less than 0.84 (as discussed in Section 3.2), and it has been found to
be less accurate for displacements smaller than 1.5 m. In addition, the
MLR model assumes independence of the input variables and does not
reflect the interaction/correlation effects between the seismic, geomet-
ric and soil parameters.

A soft computing technique known as artificial neural networks
(ANN) has also been successfully applied to estimate the lateral dis-
placement based on case records (Wang and Rahman, 1999; Chiru-
Danzer et al., 2001). The main advantage of ANN over other regression
techniques is the ability to capture and represent the nonlinear interac-
tion among the multitude of variables of the system without having to
assume the form of the relationship between the variables. Some limi-
tations of neural networks includemodel interpretability, computation-
al intensity, slow convergence speed and over-fitting problems.

In this paper, the liquefaction-induced lateral spread database used
by Youd et al. (2002) has been reanalyzed using a procedure developed
by Friedman (1991) known as multivariate adaptive regression splines
(MARS). No prior knowledge of the form of the function is required in

MARS. Besides the good predictive accuracy of MARS, its other advan-
tages include its capacity to find the complex data mapping in high-
dimensional data and produce simple, much easier to interpret models,
its processing speed and its ability to estimate the relative importance of
the input variables.

2. Details of MARS

Friedman (1991) introduced MARS as a statistical method for fitting
the relationship between a set of input variables and dependent vari-
ables. MARS is a nonlinear nonparametric method based on a divide
and conquer strategy in which the training data sets are partitioned
into separate piecewise linear segments (splines) of differing gradients
(slope). No specific assumption about the underlying functional rela-
tionship between the input variables and the output is required. The
end points of the segments are called knots. A knot marks the end of
one region of data and the beginning of another. The resulting piecewise
curves (known as basis functions), give greater flexibility to the model,
allowing for bends, thresholds, and other departures from linear
functions.

MARS generates basis functions by searching in a stepwise manner.
It searches over all possible univariate knot locations and across interac-
tions among all variables. An adaptive regression algorithm is used for
selecting the knot locations. MARS models are constructed in a two-
phase procedure. The forward phase adds functions and finds potential
knots to improve the performance, resulting in an overfitting model.
The backward phase involves pruning the least effective terms. An
open MARS source code from Jekabsons (2010) is used in carrying out
the analyses presented in this paper.

Table 1
Some empirical models for prediction of the lateral spread.

Method Subset Model

Hamada et al. (1986) Dh = 0.75H1/2θ1/3

(H is the thickness of the liquefied soil, in meters; θ is the slope of either the ground surface or the
base of the liquefied soil, in percent)

Youd and Perkins (1987) logLSI = −3.49 − 1.86logR + 0.98M
(Liquefaction Severity Index LSI is defined as the general maximummagnitude of ground failure
displacement, measured in millimeters divided by 25)

Bardet et al. (1999) ff log Dh þ 0:01ð Þ ¼ −17:372þ 1:248M−0:923 logR−0:014Rþ
0:685 logW þ 0:3logT15 þ 4:826 log 100−F15ð Þ−1:091D5015

gs log Dh þ 0:01ð Þ ¼ −14:152þ 0:988M−1:049 logR−0:011Rþ
0:318 logS þ 0:619 logT15 þ 4:287 log 100−F15ð Þ−0:705D5015

Youd et al. (2002) ff logDh ¼ −16:713þ 1:532M−1:406 logR�−0:012Rþ 0:592 logW
þ0:540 logT15 þ 3:413 log 100−F15ð Þ−0:795 log D5015 þ 0:1mmð Þ

gs logDh ¼ −16:213þ 1:532M−1:406 logR�−0:012Rþ 0:338 logS
þ0:540 logT15 þ 3:413 log 100−F15ð Þ−0:795 log D5015 þ 0:1mmð Þ

Javadi et al. (2006) ff Dh ¼ −234:1 1
M2RW

−156 1
M2 −0:008 F15

R2T15
þ 0:01WT15

R −2:9 1
F15

−0:036MT2
15D50

2
15

R2W
þ 9:4 M

RF15
−4� 10−6 MR2

D5015
þ 3:84

gs Dh ¼ −0:027 T2
15 F15
M2 þ 0:05 RT15

M2D5015
þ 0:44 1

MR2ST15
−0:03R

−0:02 M
ST15

−5� 10−5 MR
D502

15
þ 0:075M2−2:4

Note: ff is for free-face condition; gs is for gently sloping ground.

Table 2
Parameters and parameter descriptions used in Youd et al. (2002).

Parameters Parameter description

Output log(Dh) Dh, the estimated lateral ground displacement, in meters
Input M The moment magnitude of the earthquake

R The nearest horizontal distance from the site to the seismic energy source, in kilometers
log(R⁎) R⁎ = 10(0.89M − 5.64) + R, the modified source distance, in kilometers
log(W) or log(S) log(W) for free face condition,W, the free-face ratio defined as the height (H) of the free face divided by the horizontal

distance (L) from the base of the free face to the point in question, in percent;
log(S) for gentle slope ground, S, the ground slope, in percent

log(T15) T15 is the cumulative thickness of saturated granular layers with corrected blow counts, (N1)60, less than 15, in meters
log(100 − F15) F15 is the average fines content for granular materials included within T15, in percent
log(D5015 + 0.1) D5015 is the average mean grain size for granular materials within T15, in millimeters
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