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Modeling seepage along with themechanical response of deformable Earth dams under transient conditions is a
very complicated task, since it involves coupling between different phases, computation of free surface variables
in time, and thus it requires algorithms for integration in time. These aspects represent a combination of several
problems, which are usually undertaken in a separate way, uncoupling mechanical response and flow through
the porous media. When such computations are carried out, most of the times rigid solid skeleton is considered
without a comprehensive analysis of thedegree of accuracy achievedwith such assumptions.Moreover, it is rath-
er difficult to find in the literature coupled formulations under transient conditions. In this paper, a numerical fi-
nite element, coupled, transient model for analyzing unconfined seepage through Earth dams is presented. This
model is based on Biot's equations, in terms of displacements (so called u–w formulation). The iterative proce-
dure to obtain free surfaces by changing impermeability boundary conditions is implemented in this model.
This generalized model is validated against several cases found in the literature. After that, several relevant as-
pects of the particular problem of fast emptying of a reservoir, and the calculation of the limiting drawdown
speed for not compromising the Earth dam safety, are explored. Thus, the influences of different drawdown
speeds, soil permeability values, stiffness and geometries in a theoretical rectangular Earth dam have been ana-
lyzed in terms of effective vertical stress changes at relevant points inside the dam. In summary, all these studied
cases show the suitability of the presented methodology for evaluating such situations in real Earth dams, and
give hints on the more significant aspects to be considered in the Earth dam design.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

During the last forty years, plenty of methods for determining free
surface in unconfined seepage problems through porous media have
been developed, based on numerical schemes. In most of these
approaches, rigid solid skeleton and steady condition hypotheses are
usually assumed for undertaking this computation, neglecting the
influence of these aspects in the final results. In addition, the hypothesis
of totally dry or saturated state is also a usual assumption.

The first numerical methodologies for undertaking such problems
consisted of generating a tentative mesh in the spatial domain, solving
the seepage governing equation (rigid media, steady conditions),
verifying the free surface conditions (which at the same time is bound-
ary and flow line), and adapting the existing mesh in an iterative
manner until reaching afinal consistent solution,with a clear separation
of dry and saturated spatial domains (Finn, 1967; Taylor and Brown,
1967; Neuman and Witherspoon, 1970). These procedures are very

much time consuming, andweremodified in theway of slightlymoving
the nodes close to the tentative free surface location, until convergence,
and hence, escaping from the necessity to generate a newmesh in each
iteration, but just changing a little bit the existing one (Oden and
Kikuchi, 1980). These adaptativemeshmethods often lead to inaccurate
calculations, since the elements close to the boundary can be extremely
distorted at the end of the computation process. Aiming to improve this
aspect, a new approach, consisting of keeping constant the spatial
domain, but making variable the soil permeability above and below
the free surface, was adopted (Desai, 1976; Bathe and Khoshgoftaar,
1979; Bardet and Tobita, 2002; Kazemzadeh-Parsi and Daneshmand,
2012).

The first methodologies in which the solid skeleton was considered
as deformable (elastic) were those developed by Lacy and Prevost
(1987) and Borja and Kishnani (1991), with variable permeability
respectively below and above the free surface. Such procedures meant
a major computational effort, since, in each iteration, the stiffness
matrix must again be obtained, and inverted.

All the abovementionedmodelswere developed for steadyflow con-
ditions. Methods for variable flow have been also proposed by Herbert
(1968), and, more recently, by Herreros et al. (2006), who applied a
completely different approach to determine the free surface, namely
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the level set technique, which has proved to be a very efficient tool to
solve transient flow problems.

All the above mentioned methodologies are formulated in terms of
water heads, focusingmore in the fluid behavior, and almost neglecting
the coupling with the solid skeleton in most of the cases. The novelty of
the new methodology presented in this paper is, on the one hand, a
coupled formulation of the problem of seepage through porous media,
based on displacements of both solid and fluid phases, the so called
u–w formulation. On the other hand, a recently developedmethodology
to obtain free surfaces, iteratively changing the impermeability boundary
conditions, and using constant permeability (i.e., constant spatial domain
without needing to iterate the stiffness matrix), has been implemented,
making the model very efficient (López-Querol et al., 2011).

The paper begins showing the governing equations along with the
time integration scheme followed to compute the evolution in time
of the solution, under transient conditions. Validations of the method,
against previously published results, considering deformable solid
skeleton and transient conditions, are also included.

Finally, the influence of several factors which might compromise an
Earth dam safety in a fast emptying of the reservoir is explored, trying to
obtain practical conclusions and relevant hints in the Earth dam's design.

2. Model features

2.1. Governing equations

The present problem has been undertaken using the Biot's equations
(Biot, 1956; Zienkiewicz et al., 1999; López-Querol et al., 2008). These
equations are based on formulating the mechanical behavior of a solid–
fluid mixture, the coupling between different phases, and the continuity
of flux through a differential domain. Thus, Eqs. (1) and (2) respectively
account for the momentum equilibrium at the soil–fluid mixture, and
only the fluid phase. Eq. (3) represents the continuity equation:

ST � dσ−ρ � du€−ρ f � dw€ þ ρ � db ¼ 0 ð1Þ

−∇dpw−K−1 � dẇ−ρ f � du€−
ρ f

n
� dw€ þ ρ f � db ¼ 0 ð2Þ

∇TdẇþmT � dε̇þ dṗw
Q

¼ 0: ð3Þ

In the above equations, u denotes displacement of the solid skeleton,
and w represents the relative displacement of the fluid phase with
respect to the solid one, which is determined by Eq. (4):

w ¼ n � U−uð Þ: ð4Þ

In these expressions, U is the absolute displacement of the fluid
phase; n is the porosity of the soil, ρ and ρf respectively denote mixture
and fluid phase densities, pw represents pore water pressure, tb is the
external acceleration vector and K means permeability matrix,
expressed in units [m3] · [s]/[kg]. Moreover, Q is the volumetric
compressibility of the mixture, and S represents a matrix operator,
which, in 2D problems, is defined as Eq. (5):

S ¼

∂
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S also relates incremental strain vector, dε and incremental solid phase
displacement vector, du:

dε ¼ S � du: ð6Þ

In Eq. (3),m represents the identity vector, which in 2D is expressed
as:

m ¼
1
1
0

0
@

1
A: ð7Þ

The adopted sign criterion is: extension is positive for both stress
and strains, σ and ε, and conversely, pore water pressure pw is consid-
ered positive in compression.

By means of Terzaghi's effective stress decomposition rule:

σ ¼ σ ′−m � pw ð8Þ

where σ′ and σ respectively indicate effective and total stress vectorial
expression of the corresponding tensors (Zienkiewicz et al., 1999).

If linear elasticity is adopted as constitutive law, the relationship
between stresses and strains, expressed in its incremental form, is
governed by:

dσ ′ ¼ De � dε ð9Þ

whereDedenotes the elastic tensor,which, for plane strain conditions, is
given by:

De ¼ λ
ν
�

1−ν ν 0
ν 1−ν 0
0 0

1−2 � ν
2

0
B@

1
CA ð10Þ

where ν indicates the Poisson's ratio, λ is the Lame's constant:

λ ¼ 2 � G � ν
1−2 � ν ð11Þ

and G is the elastic shear modulus.
Rearranging the above equations, Eq. (1) yields:

ST � De � S � du−∇Tdpw−ρ � du€−ρ f � dw€ þ ρ � db ¼ 0: ð12Þ

2.2. u–w formulation

The problems dealt with in this research are considered 2D under
plane strain conditions. Hence, at each node, the number of degrees of
freedom is 5: vectors u and w (with two components each) and the
scalar pw. Trying to improve the numerical efficiency of this methodolo-
gy, it is of paramount importance to reduce this number of unknowns.
To do that, the most extended trend is the u–pw formulation, which
departs from the assumption of neglecting dw€. By so doing, the number
of degrees of freedomdrastically decreases, particularly in 3D problems.

Another possibility is the so called u–w formulation, also known as
“complete” formulation, since it does not require additional assump-
tions. Eq. (3) is integrated in time, and dpw is then substituted into
Eqs. (1) and (2), yielding:

ST � De � S � duþ Q �∇ ∇Tdu
� �

þ Q �∇ ∇Tdw
� �

−ρ � du€−ρ f � dw€ þ ρ � db ¼ 0

ð13Þ

Q �∇ ∇Tdu
� �

þ Q �∇ ∇Tdw
� �

−K−1 � dẇ−ρ f � du€−
ρ f

n
� dw€þ ρ f � db ¼ 0:

ð14Þ

The above set of equations is solved in the spatial domain using a
finite element scheme, applying Galerkin's method (Ottosen and
Petersson, 1992; Zienkiewicz and Taylor, 2000). Triangular finite
elements, using quadratic approximation (6 nodes each element), are
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