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This work studies the reliability analysis of a slope that considers multiple failure modes. The analysis consists of
two parts. First, significant failuremodes that contributemost to system reliability are determined. The so-called
barrier method proposed by Der Kiureghian and Dakessian to identify significant failure modes successively is
employed. Second, the failure probability for the slope is estimated on the basis of identified significant failure
modes and corresponding design points. For reliability problems entailing multiple design points, failure
probability can be estimated by the multi-point first-order reliability method (FORM), which gives the
probability of the union of approximate events. FORM approximations at each design point and a subsequent
series system reliability analysis are employed to estimate failure probability. Application of the procedure is
illustrated through example problems. The results show that the applied procedure is able to efficiently consider
various failure modes caused by stratifications and variations in soil properties in probabilistic slope stability
assessments.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In slope reliability analysis, numerous slip surfacesmay be present. If
failure along any individual slip surface is viewed as a failure mode, the
problem of slope stability can be considered as a series system with
infinite failure modes in the sense that failure of the slope occurs if
just one of the potential slip surfaces fails. However, it is not possible
to determine system reliability accurately for slope stability problems.
The probability of failure for the most critical slip surface is therefore
commonly used to estimate system failure probability. This approach
assumes that the probabilities of failure along differing slip surfaces
are highly correlated (Chowdhury and Xu, 1995). In the case of highly
correlated modes, the contribution to system failure probability from
failure surfaces other than that associated with the maximum failure
probability may be small, even though the modes are infinitely many
(Cornell, 1967). However, as noted by Cornell (1971), the overall failure
probability of a slope may be greater than that along any individual slip
surface when the correlation between differing potential slip surfaces is
not strong. Some researchers have therefore considered the system reli-
ability of slopes by studying several slip surfaces.

Ditlevsen's (1979) bounds method is widely used to calculate the
system failure probability of slopes based on limit equilibriummethods
(Oka and Wu, 1990; Chowdhury and Xu, 1995; Low et al., 2011; Ji and
Low, 2012). Griffiths and Fenton (2004) and Huang et al. (2010) have

used Monte Carlo simulation (MCS) to calculate the system failure
probability of a slope based on finite element models.

Hong and Roh (2008) and Cho (2010) have dealt with the system
aspect of the slope in reliability analysis by defining a limit state for
the system as a function of the minimum factor of safety for all poten-
tial slip surfaces.

Ching et al. (2009) have suggested a method based on the impor-
tance sampling (IS) technique to efficiently estimate the system fail-
ure probability of slope stability for circular slip surfaces based on
the ordinary method of slices. They analyzed several slopes, and the
results were compared with the single-mode first-order reliability
method (FORM). From the results of the numerical examples, they
concluded that the methods based on FORM may underestimate the
failure probability depending on the number of failure modes.

The present paper describes a study of the failure probability of a
slope that considers multiple failure modes to obtain further insight
into this probability. The reliability analysis consists of two parts. In
the first part, significant failure modes that make the greatest contri-
bution to system reliability are determined. The so-called barrier
method proposed by Der Kiureghian and Dakessian (1998) to succes-
sively identify significant failure modes and corresponding design
points is employed. Reliability analysis is then carried out to estimate
the failure probability for the slope on the basis of the identified sig-
nificant failure modes. For reliability problems entailing multiple de-
sign points, failure probability can be estimated by the multi-point
FORM, which gives the probability of the union of approximate
events. FORM approximations at each design point and subsequent
series system reliability analysis are employed to estimate the failure
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probability. Application of the procedure is illustrated through exam-
ple problems.

2. Deterministic slope stability analysis

2.1. Limit equilibrium method

Slope stability problems are commonly analyzed using limit equilib-
rium methods of slices. The failing soil mass is divided into a number of
vertical slices to calculate the factor of safety, which is defined as the
ratio of the resisting shear strength to themobilized shear stress needed
tomaintain static equilibrium. The static equilibriumof the slices and the
mass as a whole are used to solve the problem. However, all methods of
slices are statically indeterminate and, as a result, require assumptions
in order to solve the problem. The approach presented here adopts
Bishop's simplified method, which is widely accepted as being reason-
ably accurate and is applicable to the failure surface of a circular shape.

2.2. Search for critical failure surface

Limit equilibriummethods require that the critical failure surface be
determined as part of the analysis. The problem of locating the critical
circular surface can be formulated as an optimization problem:

min
surface

Fs xc; yc;Rð Þ ð1Þ

where Fs is the objective function (the factor of safety), xc and yc are the
coordinates of the center of the circle, and R is the radius of the circle.

Although a circular trial slip surface can be described as a function
of three shape variables, it could be defined as a series of straight seg-
ments. The location of the segment vertices is determined by shape
variables and by the location of a hard stratum that the slip surface
cannot penetrate. Treatment of a circular slip surface is straightfor-
ward because there are only three location parameters. Eq. (1) is a
type of unconstrained optimization problem that has no equality or
inequality conditions. The Broyden–Fletcher–Goldfarb–Shannometh-
od, widely acknowledged to be efficient, was applied in this study in
order to search for the critical circular slip surface. Kim and Lee
(1997) have described this procedure in detail.

3. Probabilistic slope stability analysis

3.1. Limit state function

The problem of probabilistic slope stability analysis is formulated by
a vector, x=[x1,x2,x3,…,xn], that represents a set of random variables.
From the uncertain variables, a limit state function g(x) is formulated
to describe the limit state in the space of x. In n-dimensional hyperspace
of the basic variables, g(x)=0 is the boundary between the region in
which the target factor of safety is not exceeded and the region in
which it is exceeded.

The limit state function for the slope stability is usually defined as

g xð Þ ¼ Fs−1:0: ð2Þ

Bishop's simplified method is used to describe the limit state func-
tion of Eq. (2) by calculating Fs for the failure surface.

The probability of failure of the slope is then given by the follow-
ing integral (Baecher and Christian, 2003):

Pf ¼ P g x≤0ð Þ½ � ¼ ∫g xð Þ≤0f x xð Þdx ð3Þ

where fx(x) denotes the joint probability density function, and the in-
tegral is over the failure domain.

For slope stability problems, direct evaluation of the n-fold integral
is virtually impossible. Therefore, approximate techniques have been
developed to evaluate this integral.

3.2. First-order reliability method

First-order reliability evaluation of Eq. (3) is accomplished by
transforming the uncertain variables, x, into uncorrelated standard nor-
mal variables, u. The primary contributor to the probability integral in
Eq. (3) is the part of the failure region (G(u)≤0, for which G(u) is the
limit state function in the transformed normal space) closest to the or-
igin. The design point is defined as point u* in the standard normal
space located on the limit state function (G(u)=0) with the maximum
probability density attached to it. Therefore, the design point, which is
the point closest to the origin in the failure region, is an optimum
point at which to approximate the limit state surface. The probability
approximated at the design point is

P g xð Þ≤0½ �≈Φ −βð Þ ð4Þ

where β is the reliability index defined by the distance from the origin
to the design point and Φ is the standard normal cumulative density
function.

In FORM, a tangent hyperplane is fitted to the limit state surface at
the design point. Therefore, the most important and challenging step
in the method is finding this point. The design point is the solution of
the following nonlinear constrained optimization problem:

min‖u‖subject to G uð Þ ¼ 0: ð5Þ

Generally, the FORM approximation gives a reasonable result for a
limit state function with only one global design point. However, this is
not the case when there are other local design points on the limit
state surface. In this case,multiple designpointsmake important contri-
butions to the total system probability of failure, and significant errors
will be induced if one of these points is missing. Unfortunately, conven-
tional gradient-based optimization algorithms used in connection with
FORM are able to identify only one design point and provide no infor-
mation on other potential design points.

4. Identification of significant failure modes

Finding the entire set of relevant design points is, in general, a chal-
lenging problem for classical gradient-based optimization methods.

If multiple design points exist, or if there are contributions from
other regions around local minimums besides the region around a sin-
gle design point, thesemethodsmay fail to provide a correct estimation
of failure probability. To handle problems with multiple design points,
two steps need to be taken: (1) search techniques to find all design
points and (2) system reliability analysis that takes into account the cor-
relation of the piecewise approximation of the limit state surface based
on these design points (Wei, 2006).

The arbitrary failure set defined in Eq. (3) may present large calcu-
lation difficulties. As suggested by Ditlevsen and Madsen (1996), this
set can be approximated by multiple first-order approximations, as
shown in Fig. 1. A reliability calculation can then be performed with
less difficulty for a simpler failure set. To use this method, all local
minima need to be determined in advance, and the quality of the so-
lution depends on the accuracy of these approximations (Wei, 2006).

A simple approach to determining significant failuremodes is simula-
tion, where realizations of relevant random variables are simulated. Cor-
responding to each set of realizations, failure modes are determined by
slope stability analysis. The process is repeated until sufficient failure
modes are discovered. Although this approach is straightforward, simula-
tions require large computational efforts. In addition, it is difficult to
guarantee that all the significant modes have been found. Zhang et al.
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