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A new numerical integration/linear regression tool is used to investigate kinematic behavior in deep-seated
(sliding surface deeper than 3 m) mass movements. The technique is developed in the context of real
inclinometer records and numerical integration using nine inclinometer case histories from four well
documented, large landslides: Carrot River, Montebestia, Karya village, and Pietrapertosa. Axial metric,
subsurface geometric deformation rates are predicted and compared for four different case studies from the
literature: a reactivated, composite, extremely slow earth slide-earthflow; a reactivated composite,
extremely slow debris slide-rock fall; an active, composite, very slow earth slide-earth flow; and a
reactivated complex, slow earth slide-earth spread. Sensitivity analysis, based on sliding surface depth-to-
length (D/L) ratios, show that the mobility of these slow-moving masses is closely dependent on the mode of
sliding. The results also show that short term and long term dynamics of slow moving landslides can be
captured by geometrical patterns. Because the parameter determined is a geometric property, the technique
used in the investigation can be applied in new landslide problems independent of local conditions and
triggering mechanisms, within the confines of the stipulated boundary conditions. Hence with this
framework also, unrelated landslide problems can be analyzed and compared, as demonstrated herein.
Additionally, this approach is useful for two dimensional reconstructions of subsurface displacement and
velocity profiles, and thus may act as a precursor to detailed field investigation programs, warning systems
and mitigation projects at minimal costs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Landslides triggered by seismic loading or abrupt severe climate
change can cause loss of lives and substantial property damage. Deep
seated landslides (DSL's) pose an even greater challenge because
catastrophic failure is often preceded by very slow motion that often
goes unnoticed. Unfortunately, there is a general lack of sufficient
coherent techniques for characterizing the subsurface dynamics of
DSL's, other than field techniques. By carefully monitoring slow
movements via field methods such as borehole inclinometers, air
photos, surface bench marks, etc., crucial understanding needed for
mitigation such as magnitude, direction and depth of movement may
be inferred. The major disadvantages of such field investigation
programs are that they can be extremely costly and may demand a
lengthy time to implement. Catastrophic failures of such large
phenomena may occur long before the practitioner has had time to
analyze all the data and suggest mitigation measures. Additionally,
local conditions and triggering mechanisms can change quickly and
often unpredictably further masking needed information. Further-

more, complex geological engineering conditions in DSL's coupled
with often several interrelated triggering mechanisms may obscure
critical subsurface information such as soil profile, groundwater table
and geometry of failure (sliding) surface.

Despite the advantages and availability of several field monitoring
techniques, important factors such as landslide deformation/movement
mechanisms remain a challenge to determine coherently and in a
unifiedmanner, given the irregularity and heterogeneous, non isotropic
evolution of landmasses (Nieuwenhuis, 1991; Van Asch et al., 2007).

There are several methods of modeling/characterizing landslide
subsurfaces independent of direct field monitoring. Each approach has
its own advantages and disadvantages. Desai et al. (1995) presented a
method that simulated the velocities and displacements of a creeping
slope using parameters obtained from laboratory triaxial measure-
ments. The technique was based on a complex stress–strain behavioral
model of soils (the hierarchical single-surface plasticity and viscoplas-
ticity approach), combined with 2D finite elements. The model allowed
for elastic, plastic, creep strain, normal stress, and stress path effects.
Sitar and MacLaughlin (1997) applied discontinuous deformation
analysis to investigate the role of kinematics in landslide behavior.
Their numerical method explored the development of displacements
with time. The model considers a landslide as a system of individually
deformable blocks that move independently. The transient formulation
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of the problem is based on minimization of potential energy. Mayoraz
and Vulliet (2002) used artificial neural networks to predict velocities
and displacements in landslides. Inputs to the neural network model
included previous velocities, daily precipitation, evaporation, and pore
water pressure. The performance of their model was comparable to
purely mechanical models. Kilburn and Petley (2003) developed a
mathematical expression to characterize accelerating behavior in
creeping landslides, leading to catastrophic collapse. Their formulation
was based on subsurface deformation processes of landslides, built on
earlier observations by Voight (1988).

The main short comings with these approaches include many/
difficult variables to specify for analysis, complexity of model
formulation, inadequate verification with ground truth data, difficul-
ties in evaluating stress histories, and a general insufficient adoption
by practitioners.

The objective of this paper is to combine Gaussian–Legendre
quadrature integration with linear regression to investigate the
subsurface geometric behavior of several different DSL's. The
framework of the method is within the context of monitored
surface/near surface displacement rates. It is possible to apply linear
regression to relate surface movement rates to subsurface displace-
ments from field instrumentation, such as inclinometer records. The
main advantage of this method over exclusively field techniques is
that it is an efficient, cost effective way of analyzing landslides.
Additionally, the method requires limited assumptions and fewer
input parameters compared to typical modeling approaches. This is
due to the implicit framework of the mathematical formalism
employed; the linear regression applied already takes into account
inherent landslide complexities. Consequently, different landslides
can be analyzed and compared independent of local parameters.
Another advantage is that the technique provides a practical,
preliminary tool that can be widely applied before implementing
expensive, detailed field investigation programs. Because the tech-
nique uses real case data for the initial set up, the resulting
mathematical expression is reflective of actual ground truth informa-
tion. This is useful for sensitivity analysis because data sets from
different sources can be investigated, to understand fundamental
mechanisms/principles involved.

The major disadvantage of the numerical integration/linear regres-
sion techniquepresentedherein is that an initial data set is required that
mimics potential applications. This concept is discussed further in
Section 2.5. To begin with, the theoretical back ground of the technique
is discussed, proceeded by investigative applications in several real
examples from the literature. A discussion and conclusions then follow.

2. Background

2.1. Gaussian quadrature

Detailed descriptions of Gaussian quadrature are available in several
sources such as Acton (1990), Kincaid and Cheney (2002), among
others. Previous applications of Gaussian quadrature in engineering
geology include estimation of erosion rate variables (Arndt et al., 2001),
terrain corrections in GIS (Hwang et al., 2003), describing groundwater
flow in confined aquifers (Yeh et al., 2003), and mass balance
calculations in landslides (Kaunda et al., 2008). The following is a brief
but essential description of Gaussian quadrature, in light of this study.

Gaussian quadrature is a form of numerical integration where the
value of a univariate integral (i.e. an integral involving one variable)
may be computed at different pre-selected integration points. When
dealing with discrete experimental/field data for example, it is
possible to implement a polynomial interpolation through the
discrete data or points, which is then integrated. The interpolation
will depend on underlying assumptions made and available knowl-
edge about the behavior of the function between the points (Kincaid
and Cheney, 2002).

For example, given nodes (or x values of data) x0, x1,…, xn at their
respective locations f(xi) in the interval space [a,b], it is possible to use
a polynomial to interpolate the data using a Langrangean form. The
Lagrangean form of the polynomial interpolating the data may be
written as a summation of products as:

p xð Þ = ∑
n

i=0
f xið Þli xð Þ ð1Þ

where:

li xð Þ = ∏
j=0

j≠i

n
x−xj
xi−xj

0≤i≤nð Þ ð2Þ

In brief, the basis of Gaussian quadrature is to obtain the best
numerical estimate of an integral by picking optimal abscissas xi at
which to evaluate a function f(x). By carefully choosing the location of
xi's and appropriate weighting coefficients, high orders of accuracy
can be obtained. If the integration is expressed as:

∫
b

a
W xð Þf xð Þdx ≈ ∑

n

i=1
wi f xið Þ ð3Þ

then a set of weights, wi and points, f(xi) can be found to make the
approximation exact. These are obtained by computing the roots of
the orthogonal polynomial to the function. A function is said to be
orthogonal to another if their scalar product is zero. The roots of the
orthogonal polynomial are the abscissas of the Gaussian quadrature
formula for the same interval andweighting function. Theweights can
then be determined by solving a system of linear equations
formulated from the orthogonal polynomials of different orders:
i=0, 1, 2…n. A much simpler approach is to obtain the abscissas and
weights from available mathematical tables such as Abramowitz and
Stegun (1972), as demonstrated in this study.

If the weight function W(x)=1, then Eq. (3) becomes the Gauss–
Legendre rule for the integration interval [−1,1]. This implies that any
other integration domain [a, b]must be changed to the interval [−1,1]
before applying Gauss–Legendre rule using Eq. (4):

∫
b

a
f tð Þdt = b−a

2
∑
n

i=1
wi f

b−a
2

xi +
a + b

2

� �
ð4Þ

The Gauss–Legendre rule may be applied for different polynomial
orders such as n=2,3,4,5 and so on. Tomake the integration exact, the
function f(x) needs to be a polynomial of degree 2n−1 or less, where
“n” represents the degree of the polynomial whose roots are the
abscissas, xi thus:

f xð Þ = 1; x; x2; :::; x2n−1 ð5Þ

2.2. Volumetric rate of mass flow

In classical integration, the integral of a function represents the area
under its curve in Cartesian space. For example, displacement can be
represented by the area between a velocity curve and its time axis, and
velocity can be represented by the area between the curve of an
acceleration functionand its timeaxis. Similarly, thearea representedby
a velocity function (i.e. displacement rates obtained from measure-
ments such as inclinometer displacement profiles) is equivalent to a
very slow, planimetric, volumetric flow rate per unit width (Fig. 1). The
volumetric rate is said to be “planimetric” because it is derived from a
vectoral velocity component, and is two dimensional. It is considered a
“flow rate” on the basis of the resulting units from the numerical
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