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Spatial distribution of cement raw material compositional indices is a precondition of conducting quarry
stope layouts. These indices are calculated from chemical components, such as SiO2, Al2O3, Fe2O3, CaO and
MgO, and the most important are LSF (lime saturation factor), SIM (silica modulus), ALM (alumina modulus)
and CS (lime silica ratio). Geostatistical images of the grades are more useful in this respect, as they reflect
different representations of the reality and show the spatial distribution more accurately. This paper presents
the construction of sets of simulated images of the chemical components SiO2, Al2O3, Fe2O3, CaO and MgO as
primary variables, using the direct sequential simulation (DSS) and cosimulation (CoDSS) algorithms. For the
joint simulation, a novel methodology uses principal components (PC) as secondary variables. Finally, the
simulated images are combined algebraically in order to estimate local distribution functions of the
compositional indices (LSF, ALM, SIM and CS), showing whether the local probability of each index is within
the optimal interval.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cement, the basic ingredient of concrete, is a closely controlled
chemical combination of calcium, silicon, aluminium, iron and small
amounts of other ingredients to which gypsum is added in the final
grinding process to regulate the setting time of the concrete. Lime and
silica make up about 85% of the mass. Common among the materials
used in its manufacture are limestone, shells, and chalk or marl
combined with shale, clay, slate or blast furnace slag, silica sand, and
iron ore. Each step in the manufacture of cement, such as quarry
extraction of raw materials, is checked by frequent chemical and
physical tests in plant laboratories. The final product is also analyzed
and tested to ensure it complies with specifications (IPQ, 2001).
Spatial distribution of cement raw material compositional indices is a
precondition of conducting quarry stope layouts. These indices are
calculated from weighted percentages of chemical components, such
as SiO2, Al2O3, Fe2O3, CaO and MgO, and the most important are LSF
(lime saturation factor), SIM (silica modulus), ALM (alumina
modulus) and CS (lime silica ratio).

The LST or lime saturation factor is the ratio between calcium and
the weighted sum of the silica, alumina and iron amounts by weight:

LSF =
CaO

2:8SiO2 + 1:18Al2O3 + 0:65Fe2O3

: ð1Þ

When the raw materials are correctly mixed and under proper
burning conditions, no free CaO should be left in the clinker.
Theoretically, the LSF should range between 0.66 and 1.02, but is
optimal if between 1 and 1.02. Higher values are better as the cement's
mechanical resistance is improved, however, the rawmaterials must be
groundmore finely and the clinker temperaturemust be higher, leading
to damage to the furnace walls.

The SIM, or silica modulus, also known as the silica ratio, is the
second most important index and represents the relationship
between the silica and the sum of the alumina and iron grades:

SIM =
SiO2

Al2O3 + Fe2O3

: ð2Þ

A high SIM raw material produces a clinker with a high grade of
silicates, and consequently cement with high mechanical resistance.
However, high SIM rates have disadvantages, such as a low percentage
of the liquid phase, difficulty in clinkerization and the need for higher
temperatures, increasing fuel consumption. However, the advantages of
a low SIM are a higher percentage of the liquid phase, facilitating
clinkerization, with low burn temperatures, and therefore less energy
consumption. SIM values usually range between 2.4 and 2.6.

The ALM or alumina modulus is calculated as the ratio between
alumina and iron:

ALM =
Al2O3

Fe2O3

: ð3Þ
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Suitable ALM values range between 1.5 and 1.7.
On the other hand, the ratio between calcium and silica (CS)

should be higher than 2.0:

CS =
CaO

SiO2≥2:0:
ð4Þ

Finally, the magnesium grade (MgO) should be below 5% weight:

MgOb5%: ð5Þ

Geostatistical techniques in earth sciences are able to produce an
average image (estimation) or a set of equiprobable images (simula-
tion) of the spatial distribution of petrophysical or geochemical
variables (Matheron et al., 1987; Journel and Alabert, 1988; Srivastava,
1994; Goovaerts, 1997; Deutsch and Journel, 1998). They are often used
in evaluation of reserves and mine/quarry exploitation planning
(Taboada et al., 1999; Tercan andÖzçelik, 2000; Emery and Silva, 2009).

In simulation methods, the intention is not to produce an average
image, or themost likely image, of the characteristics of the resource (the
objective of any estimation, for example kriging), but a set of realistic
images showing extreme behaviours and local and global uncertainty.
Each simulated image is a particular realization of a random function,
keeping the same spatial distribution, basic statistics (histogram) and
spatial variability (variogram or spatial covariance) as the experimental
data.

To simulate images of compositional indices, two approaches can be
used: generation of images of grades and subsequent calculation of
indices, or immediate generation of images treating the indices as
random variables. In our paper, we decided to (co)simulate first the five
chemical components (SiO2, Al2O3, Fe2O3, CaO and MgO), the
compositional indices being constructed subsequently. This procedure
is mainly justified by the lower spatial continuity of the indices
comparedwith the chemical components, given that they are combined
by a math formula and the chemical components are not all highly
correlated. On the other hand, all five chemical components show a
well-defined spatial structure, as demonstrated by the variograms and
corroborated by the stratification orientation visible in the quarry.

Several simulation methods are candidates to generate images of the
oxide components, notably sequential simulation. Sequential Gaussian
simulation (SGS) and sequential indicator simulation (SIS) were the first
versions used (Journel, 1989; Goovaerts, 1997; Deutsch and Journel,
1998). More recently, DSS such as that proposed by Caers (2000) and
improved by Soares (2001) became widely used sequential simulation
techniques for continuous variables, avoiding transformations to normal
score spaceand facilitating theuseof secondary information (Robertsonet
al., 2006; Emery and Silva, 2009). In the present work, direct sequential
simulation and cosimulation were used (DSS and CoDSS).

Inmultivariableenvironments, CoDSSareagoodcandidate to simulate
the entire set of variables preserving the intrinsic relationships between
variables (as measured by correlation coefficients and variograms). In
CoDSS, local mean and variance can be estimatedwith simple cokriging if
all variables are simulated at once (Journel and Huijbregts, 1978; Goulard
and Voltz, 1992) or simple collocated cokriging if variables are simulated
one at a time (Almeida and Journel, 1994). However, and especially with
more than two variables, modelling a coregionalization is a difficult
problem that can only be solved by assuming simplifications.

In the present paper, for the joint simulation of chemical components
or primary variables (SiO2, Al2O3, Fe2O3, CaO and MgO), a novel
methodology uses the principal components (PC) of principal component
analysis (PCA) as secondary variables. Finally, the simulated images are
combined algebraically in order to estimate local distribution functions of
the compositional/quality indices (LSF, ALM, SIM and CS), showing
whether the local probability of each index is within the optimal interval.

A case study on the Outão cement plant illustrates the proposed
methodology. Samples were collected at the quarry stopes from an

approximately regular mesh of vertical boreholes and chemically
analyzed by X-ray fluorescence.

2. Methodology

2.1. Framework

The main goal of the proposed methodology is to produce sets of
simulated images of the compositional indices described above and
zoning of the most appropriate areas in terms of raw material, in the
following steps:

1 Exploratory univariate and bivariate statistical analysis of the
chemical components (primary variables) under study: SiO2,
Al2O3, Fe2O3, CaO and MgO.

2 For the primary variables, application of principal component
analysis (PCA) and selection of the principal components (PC) to
use as secondary data, usually two or three, that explains most of
the variance.

3 Correlation analysis between the selected PC (secondary data) and
the chemical components (primary data);

4 Calculation of experimental variograms and fitting of theoretical
models for the selected PC and the primary variables.

5 Stochastic simulation of Ns images of each selected PC, using DSS.
Each set of Ns simulated images will be considered secondary data
in the following stages of this methodology. It is important to note
the independence between the PCs, which justifies the use of DSS,
not CoDSS.

6 Cosimulation of Ns images of each chemical component (primary
data), conditioned to the sample data and sets of simulated images
of the PCs (secondary data) with CoDSS.

7 Calculation of Ns images of cement's compositional index (SIM,
ALM, LSF and CS) by algebraic combination of the simulated images
of the chemical components, according to Eqs. (1)–(4). Locally, the
set of Ns values constitutes an estimation of the local histogram of
these indices.

The simulated images obtained in step 7) enable the generation of
exploitation scenarios and optimal strategies for planning of raw
materials mixtures, highlighting global and local uncertainties.
Indicator maps and zoning of areas in which the compositional
indices (SIM, ALM, LSF, CS and grade of MgO) display values in the
optimal intervals are another important issue on the basis of the Ns

simulated images of indices.

2.2. Process steps of DSS and CoDSS

To explain the cosimulation of a grid of values withN locations (xu)
we first denote Z1(x) as the primary random variable and Z2(x) as the
secondary random variable.

The DSS steps are as follows (Soares, 2001):

i) Selection of a random sequence with a single visit to each grid
location xu to be simulated.

ii) At each grid location xu, simulation of the z2
s(xu):

– Estimation of the local mean and variance of Z2(x) at grid
location xu, z2(xu)⁎ and σz2

2(xu)⁎ by simple kriging.
– Local resampling of the histogram of z2(xu) using, for

instance, a Gaussian transformation (φ2) of the variable Z2
(x); calculation of y(xu)⁎=φ2[z2(xu)⁎].

– Generation of a random number p from the uniform
distribution function U defined between [0;1].

– Generation of the value ys from the Gaussian distribution G(y
(xu)⁎, σz2

2(xu)⁎): ys=G−1(y(xu)⁎, σz2
2(xu)⁎,p).

– Inverse transformation and generation of the simulated
value of the secondary variable z2

s(xu)=φ2
−1(ys).

iii) Loop until all N grid locations are simulated.
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