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Abstract - -We consider utility-constrained Markov decision processes. The expected utility of the 
total discounted reward is maximized subject to multiple expected utility constraints. By introducing 
a corresponding Lagrange function, a saddle-point theorem of the utility constrained optimization 
is derived. The existence of a constrained optimal policy is characterized by optimal action sets 
specified with a parametric utility. @ 2006 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  A N D  P R O B L E M  F O R M U L A T I O N  

Utility-constrained Markov decision processes (MDPs) arise in the case where the decision maker 
wants to maximize the total reward under more than one utility function. The typical case is, 
for example, that in the group decision problem with different utility functions each player wants 
to maximize the reward under his own specified utility function. In such a case, we want to 
maximize the one type of expected utility of the reward while keeping other types of expected 
utilities higher than some given bounds. 

In this paper, we consider general utility-constrained MDPs in which the expected utility of 
the total discounted rewards is maximized subject to multiple expected utility constraints and 
the objective is to show that the Lagrange approach to general utility-constrained MDPs is 
successfully done. In fact, by introducing a corresponding Lagrange function, a saddle-point 
theorem is given, by which the existence of a constrained optimal policy is proved. And a 
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constra ined opt imal  pol icy is character ized by opt imal  act ion sets specified with  a paramet r ic  
utility. 

However, we do not  specify the  kind of ut i l i ty  function; it is expected  to enlarge the  pract ical  

appl icat ion of MDPs.  As far as we are aware, it  appears  tha t  l i t t le work has been done on 

the Lagrange method  to general  u t i l i ty-const ra ined MDPs.  The  me thod  of analysis  for general 
ut i t i ty functions is closely re la ted to [1,2], in which discounted MDPs  have been s tudied with 

general ut i l i ty  function and whose results are appl ied to character ize  a const ra ined opt imal  policy. 
Recently, Kurano  et al. [3] derived a saddle-point  theorem for constra ined MDPs  with average 
reward criteria.  For the  ut i l i ty  t r ea tmen t  for MDPs  and constra ined MDPs,  refer to  [1,2,4-7] and 

their  references. 

In the  remainder  of this  section, we define the  ut i l i ty-const ra ined problem to be examined and 
a constra ined opt imal  policy. F i rs t  we consider s t andard  Markov decision processes (MDPs),  

specified by 

(s, {A(i)}~s, q, T), 

where S = { 1 , 2 , . . .  } denotes the set of the s ta tes  of the  processes, A(i)  is the  set of actions 
available at  each s ta te  i E S,  taken to be a Borel subset  of some Polish space A. The  mat r ix  

q = (q~j(a)) is a t rans i t ion  probabi l i ty  sat isfying tha t  Y~jes  q~j(a) = 1 for all i E S and a E A(i) ,  
and r ( i , a , j )  is an immedia te  reward function defined on { ( i , a , j )  l i E S, a E A ( i ) ,  j E S}.  

Throughout  this  paper ,  the  following assumpt ion will remain operative.  

ASSUMPTION 1. 

(i) For each i E S, A(i)  is a closed set of  a compact metr ic  space A. 

(ii) For each i , j  E S, both q~j(.) and r( i ,  . , j )  are continuous on A(i) .  
(iii) The function r is uniformly bounded, i.e., I r ( i ,a , j ) l  < M for ali i , j  E S, a E A(i) ,  and 

some M > 0. 

The sample  space is the  product  space f/ = (S x A) ~176 such tha t  the  pro jec t ion  Xt ,  A t  on 
the t TM factors S,  A describe the  s ta te  and the  act ion of t - t ime  of the  process (t _> 0). A policy 

~r =: (zr0, ~rl . . . .  ) is a sequence of condit ional  probabi l i t ies  rrt such tha t  zrt(A(it) I io, a0,.  �9 it) = 1 
for all histories (i0, a 0 , . . . , i t )  E ( S x A )  t x S. The set of policies is denoted by H. Let Ht = 

(Xo, Ao . . . .  , A t _ l , X t )  for t _> 0. 

ASSUMPTION 2. We assu//le that 

(i) P r o b ( X t + l  = j l H t - l , A t - l , X t  = i, At  = a) = qij(a), 
(ii) P r o b ( A t + l  E D I Ht) = 7rt(DI Ht)  

for ai1 t >_ 0, i , j  E S, a E A(i) ,  any  Borel subset D E A, and for any  given ir = (Tro,Trl,... ) E l-I. 

Let P ( X )  be denoted  by the set of all probabi l i ty  measures on any Borel measurable  set X. 
Then,  any init ial  probabi l i ty  measure v E ;~ and policy 7r E 11 de termine  the probabi l i ty  

measure  P~ E 7~(f~) in a usual way. 

For the  s ta te -ac t ion  process {X~, At; t = 0, 1, 2 , . . .  }, its discounted present  value is defined by 

013 

:= ~ 9tT(xt, zxt, xt+l), (11) 
t=0  

where /3  (0 < /3 < 1) is a discount factor. Then,  for each v E P ( S )  and 7r E I I ,  /3 is a random 

variable from the probabi l i ty  space (ft, P~) into the  interval f - M / ( 1  - / 3 ) ,  M / ( 1  -/3)].  

ASSUMPTION 3. Let g, hi (1 < i < k) be any real-vaIued functions on the set of real  numbers  R 

satisfying tha t  

(i) 9 is upper semicontinuous; 
(ii) each hi (1 < i < k) is lower semicontinuous. 
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