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Abstract—We consider utility-constrained Markov decision processes. The expected utility of the
total discounted reward is maximized subject to multiple expected utility constraints. By introducing
a corresponding Lagrange function, a saddle-point theorem of the utility constrained optimization
is derived. The existence of a constrained optimal policy is characterized by optimal action sets
specified with a parametric utility. © 2006 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION AND PROBLEM FORMULATION

Utility-constrained Markov decision processes (MDPs) arise in the case where the decision maker
wants to maximize the total reward under more than one utility function. The typical case is,
for example, that in the group decision problem with different utility functions each player wants
to maximize the reward under his own specified utility function. In such a case, we want to
maximize the one type of expected utility of the reward while keeping other types of expected
utilities higher than some given bounds.

In this paper, we consider general utility-constrained MDPs in which the expected utility of
the total discounted rewards is maximized subject to multiple expected utility constraints and
the objective is to show that the Lagrange approach to general utility-constrained MDPs is
successfully done. In fact, by introducing a corresponding Lagrange function, a saddle-point
theorem is given, by which the existence of a constrained optimal policy is proved. And a
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constrained optimal policy is characterized by optimal action sets specified with a parametric
utility.

However, we do not specify the kind of utility function; it is expected to enlarge the practical
application of MDPs. As far as we are aware, it appears that little work has been done on
the Lagrange method to general utility-constrained MDPs. The method of analysis for general
utility functions is closely related to [1,2], in which discounted MDPs have been studied with
general utility function and whose results are applied to characterize a constrained optimal policy.
Recently, Kurano et al. [3] derived a saddle-point theorem for constrained MDPs with average
reward criteria. For the utility treatment for MDPs and constrained MDPs, refer to {1,2,4-7] and
their references.

In the remainder of this section, we define the utility-constrained problem to be examined and
a constrained optimal policy. First we consider standard Markov decision processes (MDPs),
specified by

(S, {A(D) }ies, q.7),

where S = {1,2,...} denotes the set of the states of the processes, A(%) is the set of actions

available at each state ¢ € S, taken to be a Borel subset of some Polish space A. The matrix

q = (@;(a)) is a transition probability satisfying that .. 54¢i;(a) = 1 for all i € S and a € A(2),

and r(i,a, 7} is an immediate reward function defined on {(i,a,5) | i € S, a € A(i), j € S}.
Throughout this paper, the following assumption will remain operative.

ASSUMPTION 1.
(i) For each i € S, A(4) is a closed set of a compact metric space A.
(ii) For each t,j € S, both ¢;;(-) and r(3, -, j) are continuous on A(3).
(iii) The function r is uniformly bounded, i.e., |r(i,a,j)| < M for all i,5 € S, a € A(3), and
some M > 0.

The sample space is the product space = (S x A)* such that the projection X;, A; on
the t*" factors S, A describe the state and the action of ¢-time of the process (¢ > 0). A policy
7 = (mg, 1, ... ) is a sequence of conditional probabilities 7, such that m(A(i;) | ip,a0,...,%) =1
for all histories (ig,aq,...,%¢) € (S x A)t x S. The set of policies is denoted by II. Let H, =
(X(), Ao, e ?At—lﬁXt) for t > 0.

ASSUMPTION 2. We assume that

(i) Prob(Xeyr =3 | Hi-1,A¢1, Xy = 1, Ay = a) = qi5(a),

(11) PI‘Ob(AH.l eD | Ht) = Wt(D | Ht)
forallt >0,1,5 € S, a € A7), any Borel subset D € A, and for any given m = (mo,m,...) € IL.

Let P(X) be denoted by the set of all probability measures on any Borel measurable set X.
Then, any initial probability measure ¥ € P(S) and policy m € II determine the probability
measure PY € P(Q) in a usual way.

For the state-action process { X, Ay; t =0,1,2,...}, its discounted present value is defined by

oc

Bi= B'7(X:, A, Xe1), (1.1

t=0

where 8 (0 < 8 < 1) is a discount factor. Then, for each v € P(S) and 7 € II, B is a random
variable from the probability space (€2, P¥) into the interval [-M /(1 — 8), M/(1 - 3)].

AsSUMPTION 3. Let g, h; (1 <1 < k) be any real-valued functions on the set of real numbers R
satisfying that

(1) g is upper semicontinuous;

(ii) each h; (1 < i < k) is lower semicontinuous.
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