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a b s t r a c t

In this paper we consider the evaluation of the probability that a stochastic flow network allows the
transmission of a given amount of flow through one path, connecting the source and the sink node,
within a fixed amount of time. This problem, called the quickest path flow network reliability problem,
belongs to the NP-hard family. This implies that no polynomial algorithm is known for solving it exactly
in a CPU runtime bounded by a polynomial function of the network size. As an alternative, we propose to
perform estimations by a Monte–Carlo simulation method. We illustrate that the proposed tool evaluates,
with high precision and within small CPU runtime, configurations which cannot be handled, in rea-
sonable CPU runtime, by means of a well-known exact method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The quickest path problem consists of identifying a −s t path in a
network to transmit an amount d of flow from s to t with minimal
transmission time, when each arc ai of the network is assigned a lead
time value li and a capacity value ci. This optimization problem has
attracted great attention of researchers due to its usefulness in a wide
range flow network applications. It was first proposed to find the
fasted route for convoy-type traffic in flow-rate constrained network
[24] and was used later in communication networks where nodes
represent transmitters/receivers and arcs communication channels
[11]. Polynomial time algorithms for this problem and for ranking the
first K quickest paths were provided and analyzed in
[4,9,10,23,25,26,28]. The all-pairs quickest path problemwas solved in
[8,17].

When arcs may fail randomly, each path has a functioning
probability. In this case, it is of interest to consider the reliabilities
of quickest paths. Polynomial time algorithms have been proposed

for the quickest most-reliable and the most-reliable quickest path
problems in [32] and for all-pairs quickest most-reliable and all-
pairs most-reliable quickest path problems in [1]. In [30], pseudo
polynomial exact methods and fully polynomial approximation
methods were proposed to find a quickest path among those with
at least a prefixed reliability. The latter is a generalization of the
most reliable quickest path problem solved by reducing it to the
restricted quickest path case where arcs are assigned costs and the
objective is to find a quickest path among those not exceeding a
threshold cost. For the most reliable quickest path problem, the
reader can also see the work in [5] where two approaches have
been compared with respect to the required CPU runtime.

In many real-world flow networks, the capacities of arcs may
have several possible states due to the failure, the maintenance,
the traffic or other conditions. In order to take into account this
behavior, each arc ai is assigned a random capacity variable i,
instead of a deterministic value ci. For such type of network, called
a multi-state flow network, the minimum transmission time of an
amount of flow through a −s t path is also a random variable. For
the case when arc capacities are independent random variables,
the quickest path problem was extended in [18] to the computa-
tion of the probability that the network allows the transmission of
d units of flow from s to t through a −s t path within τ units of
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time. As this event is equivalent to the event “the transmission
time through a quickest path from s to t is smaller than or equal to
π ”, this problem is called the quickest path flow network reliability
problem. In [18,34] exact methods have been devoted to its eva-
luation. Unfortunately, this problem is NP-hard. Such type of
limitation leads researchers to consider Monte–Carlo techniques
which give estimates with associated confidence intervals. These
techniques, widely used for evaluating connectivity reliability
measures (see [7] for many references) and maximal flow network
reliability measures [3,13,27], was not considered for the quickest
path flow network reliability case. As a consequence, our objective
in this paper is to provide a Monte–Carlo algorithm dedicated to
this problem and to illustrate its interest when compared to the
exact approach.

Before presenting the organization of this paper, it is worth
noticing that other reliability measures exist. For instance, if the
amount d of flow can be split into 2 parts, Lin proposes to evaluate
the probability of the transmission simultaneously through 2 pre-
fixed disjoint −s t paths, within τ units of time [21]. Subsequently,
the optimal pair of −s t paths with highest probability is identi-
fied by considering each pair of disjoint paths. Due to the high CPU
runtime to determine the optimal pair, in [16] the authors propose
to find a pair of −s t paths such that the probability of successful
flow transmission is not smaller than a given reliability threshold.
In addition to the time threshold τ, reliability measures which take
into account budget constraint and the transmission through k
fixed disjoint −s t paths are presented and computed in [19,20].

The remainder of the paper is organized as follows. In the
following section we introduce general notation, definitions and
assumptions. In Section 3, we briefly recall the exact method
provided in [18]. In Section 4, we propose a Monte–Carlo method
for estimating the reliability measure under consideration. Section
5 contains some illustrations which show the interest of the pro-
posed approach. Finally, we present conclusions and future work
in Section 6.

2. Notations and problem formulation

Let us denote by ( )τ=
→

s t d, , , , , , , the stochastic flow

network where

n is the number of nodes,
m is the number of arcs,

= { … }v v, , n1 is the set of nodes,
= { … }a a, , m1 is the set of arcs,
= { … }l l, , m1 is the set of lead time with li is the lead time of
the arc ai,

( )→
= …, , m1 is the random capacity vector with i is the

random capacity of the arc ai,
Ω = { … }c c c, , ,i i i ini1 2 is the state space of i,

ni is the cardinality of Ωi,
rij is the probability that i takes value cij,

+ci is the maximal capacity of ai,
s is the source node,
t is the sink node,
d is the amount of flow which we have to send from node s to
node t,

τ is the maximal transmission time.

The stochastic flow network ( )τ=
→

s t d, , , , , , , is as-

sumed to fulfill the following conditions:

nodes are perfectly reliable,
the probability mass function of each arc random capacity
variable is known,

arcs random capacity variables are statistically independent (s-
independent),

elements of Ω = { … }c c c, , ,i i i ini1 2 are integers which verify

≤ < < ⋯ < = +c c c c0 i i i ini1 2 ,

flow is transmitted through one −s t path.

In such network, we consider the evaluation of the probability
that the network allows to send d units of flow from s to t within τ
units of time. Let us fix an element = ( … )

→
c c c, , m1 of Ω, which

denotes the state space of the random capacity vector
( )Ω Ω

→
= ⊗ =i

m
i1 . When

→
= →c , the transmission time τ ( )

→
P d c, ,

through a −s t path P depends on its lead time, deduced from the
lead times of its arcs by the formula

( ) ∑= ( )L P l 1a P ibelongs toI

and on its capacity ( )
→

B P c, which is equal to the smallest capacity

among the capacities of its arcs when
→

= →C c :

( ) = { } ( )
→

B P c Min c a P, , belongs to . 2i i

More precisely, we have

τ ( ) =
( ) +

( )
( ) ≠

+ ∞ ( )

→ →
→

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎢
⎢
⎢

⎤
⎥
⎥
⎥P d c

L P
d

B P c
B P c

, , ,
if , 0

otherwise 3

where ⌈ ⌉x is the smallest integer such that ⌈ ⌉ ≥x x.

A capacity vector Ω∈
→
c is an operational state if and only if

there is at least one −s t path P in the network such that

τ τ( ) ≤
→

P d c, , and the reliability parameter is

{ }∑=
→

= →

( )Ω→∈ +
cPr

4c

where Ω Ω⊆+ is the set of all operational capacity vectors. As the
capacity random variables are statistically independent we have

{ } { }∏→
= → = =

=

c cPr Pr .
i

m

i i
1

3. Exact evaluation of by the method proposed in [18]

To compute by means of Formula (4) may lead to prohibitive
CPU runtime when the number of arcs and/or cardinalities of Ωi

are high. Indeed, the number of states to consider in order to
identify the operational states is the cardinality of Ω which is
equal to × × … ×n n nm1 2 , where ni is the number of possible ca-
pacities of the arc ai. The method proposed in [18] avoids this
formula by exploiting the set of −s t paths. In this section, we
recall briefly this method and we illustrate its application on a
small flow network. Notations and definitions introduced here will
be useful in the later section where we propose a Monte–Carlo
algorithm dedicated to the estimate of .

Let us consider a −s t path P. The maximal possible capacity
( )+c P which P may offer, depends on the maximal capacities of its

arcs:

( ) = { } ( )+ +c P Min c a P, belongs to . 5i i

Based on Formula (3), the smallest integer capacity τ*( )c P d, , ,
which must be offered by P for the transmission of the amount d of
data within τ units of time, is
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