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a b s t r a c t

Minimizing the spread of infections is a challenging problem, and it is the subject matter in many dif-
ferent fields such as epidemiology and cyber-security. In this paper, we investigate link removal as an
intervention strategy and study the relative effectiveness of different link removal methods in mini-
mizing the spread of infections in a network. With that in mind, we develop four connectivity-based
network interdiction models and formulate these models as mixed integer linear programs. The first
model minimizes the number of connections between infected and susceptible nodes; the second the
number of susceptible nodes having one or more connections with infected nodes; the third the total
number of paths between infected and susceptible nodes; and the fourth the total weight of the paths
between infected and susceptible nodes. We also propose heuristic algorithms to solve the models. The
network interdiction models act as link removal methods, i.e., each return a solution consisting of a set of
links to remove in the network. We compare the effectiveness of these four methods with the effec-
tiveness of an existing link removal method [25], a method based on link betweenness centrality [18],
and random link removal method. Our results show that complete isolation of susceptible nodes from
infected nodes is the most effective method in reducing the average number of new infections (reduce
occurrence) under most scenarios, and the relative effectiveness of the complete isolation method
increases with transmission probability. In contrast, removing the highest probability transmission paths
is the most effective method in increasing the average time to infect half of the susceptible nodes (reduce
speed) under most scenarios, and the relative effectiveness of this method decreases with transmission
probability.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The spread of harmful infections are common in real life networks:
infectious diseases spread through social and transportation networks,
computer viruses and malware spread in computer networks, and
propaganda and rumors spread in online social networks. Minimizing
the spread of these infections is very important because they can
cause significant economic and social damage. Worldwide, infectious
diseases cause over 10 million deaths each year, accounting for 23% of
the total disease related deaths [53]. In the well-known influenza
pandemic of 1918, 30 to 50 million people are estimated to have died
[22]. According to Sanger [41], 1000 to 1500 centrifuges of an Iranian
nuclear power plant were destroyed by spreading a computer worm
called Stuxnet. Lethal worms and viruses such as Stuxnet can easily
fall in the hands of terrorist organizations and rogue nations.

The simplest and traditional way of modeling spread of infec-
tions assumes that the population as a homogeneous mix of
individuals and then compartmentalizes them based on their
infection status. Although this simple compartmental framework
has been extended to include some upper level host hetero-
geneities such as contact patterns among age groups, differing
spatial structure, inclusion of individual contact structure is a fairly
recent phenomenon [4]. The maturation of network science is
enabling researchers to find limitations in the homogeneous
mixing assumption and discover the value of network modeling
[33,37,38,52]. It is indeed important to capture the underlying
network because the ability of networks to maintain connectivity
when subjected to selective or random removal of nodes or links
depends on the particular network topology [2,23]. Connectivity is
a popular measure for networks, and it represents the ability of a
network's nodes to communicate with one another, thereby,
facilitating the spread of infections. Connectivity is applicable to
infection control because removing the nodes and links in redu-
cing the connectivity of a network is analogous to immunization of
individuals and preventing contacts in reducing the spread of
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infections. In one of the earlier studies that applied network
modeling, Satorras and Vespignani [42] showed that the tolerance
of scale-free networks [5] against random node or link removal
does not allow a homogeneous approximation of connectivity in
infectious disease spread modeling and results in overestimation
of the epidemic threshold. Pastor-Satorras and Vespignani [38]
even found the absence of an epidemic threshold in scale-free
networks. Epidemic threshold as defined by [38] is the minimum
value of the effective reproduction rate Infection rate

Recovery rate

� �
for which the

infection spreads and turns into an epidemic; otherwise, infection
dies out. The implication of the work by Satorras and Vespignani
[42] is that even in networks with very small average connectivity,
epidemics can occur, and to find the most influential set of indi-
viduals to immunize or quarantine, one must consider the
underlying network topology, irrespective of whether the topology
resembles a scale-free, random [19], small-world [52], or some
other type of network. Immunizing or quarantining randomly
based on homogeneous mixing assumption does not ensure
effective reduction of the connectivity of the network, thereby, not
preventing the spread of infections effectively.

It is possible to reduce the connectivity of a network and
consequently minimize or slow down the spread of infections in
the network by interdicting the network in two ways: removing
links and removing nodes. Tong et al. [47] and Kimura et al. [25]
proposed heuristic algorithms to minimize spread in a network by
removing a subset of links. Enns et al. [18] proposed a network
interdiction model with a non-linear programming formulation
that minimizes the number of nodes at risk of infection. He et al.
[20] proposed a model that removes a set of both links and nodes
to minimize the total cost composed of the cost of infection and
and the cost of preventing infection. Their model can also be used
as a node and link removal method to minimize spread by
accounting for the cost of prevention in a budget constraint. Koch
et al. [26] analyzed the behavior of basic reproduction number as
defined originally by Newman [37] with respect to link removal
and proposed a new definition for basic reproduction number.
Yang et al. [54] proposed a method to control a special type of
spread known as the traffic-driven outbreak by removing links
using different link ranking metrics. Chung et al. [10] studied the
efficacy of several centrality based link removal strategies on the
spread of infectious diseases through the global airline network.
Kuhlman et al. [27] proposed approximate algorithms for link
removal to minimize complex (threshold-based) contagion.

In a field related to controlling the spread of infections, other
authors have studied the problem of removing nodes in a network
in order to maximize the fragmentation of the network, mini-
mizing connectivity [1,3,11,14,44,48,50,49]. This problem is known
as the critical node detection problem (CNDP). These studies on
the CNDP optimize one or more of the following network frag-
mentation metrics: (1) the number of connected node pairs
(minimize), (2) the largest connected component size (minimize),
and (3) the number of connected components (maximize).
Although the interdiction models related to CNDP can be used to
identify a set of nodes to remove to reduce the spread of infec-
tions, they are not expected to reduce spread effectively as they
assume that all the nodes to be of the same type rather than
dividing the nodes into infectious and susceptible categories. The
aforementioned fragmentation metrics also need to be sig-
nificantly modified before they can be used for interdicting a
network to minimize spread; For example, to minimize spread, it
is enough to have just two connected components, one with all the
infectious nodes and the other with all the susceptible nodes,
instead of maximizing the number of connected components.

The field of network vulnerability and robustness analysis
[6,9,16,32,34,43,45,21,15] is a closely related field of the critical

node detection problem. The problem analyzed in this field is
functionally opposite of the critical node detection problem
because in this case, critical components (nodes and links) are
those, whose hardening results in maximizing the connectivity of
the network. The fragmentation metrics that are minimized in the
CNDP are maximized in the robustness problem and vice versa.
Moreover, although some of the studies in this field consider
cascading failure of components, most of the studies do not con-
sider spreading agents such as infections.

In this paper, we study the problem of detecting a subset of
critical links in a network, whose removal minimizes the spread of
infections. Therefore, the problem studied in this paper is similar
to the critical nodel detection problem, but it is customized for
minimizing spread by removing links instead of nodes. One of the
reasons the link removal problem is very important is that link
removal allows finer control than node removal. If a node is
removed, all of the links connected to the node are automatically
removed. In contrast, if a link is removed, only that link is
removed. A node can still be removed in this paradigm by
removing all of the links connected to it. Therefore, the link
removal problem has the potential to provide additional insights
into problems that have only been studied under node removal
[8,52,7,46,28,40]. Marcelino and Kaiser [29,30] compared several
generic edge and node ranking metrics in reducing the global
spread of influenza through an airline network. According to their
results, link ranking metrics are usually more effective than node
ranking metrics. Moreover, in many situations the node removal
option is unattractive or not available at all, whereas there is still a
way to remove links. For example, it might be very difficult to find
and eliminate terrorists in a terrorist network, but there might be
a way to block their communication channels, in effect removing
links among them. The loss associated with completely shutting
down an entire airport might be enormous, but it might be pos-
sible to temporarily suspend the flights between two specific air-
ports during a global disease pandemic. However, we should also
note that there are cases where node removal is feasible but link
removal is not. For example, if the nodes in the network represent
individuals and the links represent the interactions between
individuals, it may be possible to target specific individuals for
vaccination, but preventing specific individual-individual interac-
tions is likely not a feasible strategy.

Although many previous research studied the evolution of an
spread of infection with respect to link removal, only a small
portion of them studied link removal methods that minimize the
spread of infections. The algorithm proposed by Tong et al. [47] is
based on the finding that the leading eigenvalue of the network
adjacency matrix determines whether a spread will turn into an
epidemic [51,39]. They report the effectiveness of their algorithm
by showing that it reduces the leading eigenvalue more than other
eigenvalues. They also report the effectiveness based on the
comparison of the fraction of infected nodes produced by a
simulation. However, they do not use information about which
nodes are infected and which are not in the link selection
mechanism. Also, they do not compare their effectiveness with any
existing well-known link removal methods. The algorithm pro-
posed by Kimura et al. [25] is based on bond percolation. The main
virtue of the algorithm proposed by Tong et al. [47] and the
algorithm along with the speeding mechanism proposed by
Kimura et al. [25] is that they are fast. Kimura et al. [25] evaluate
the effectiveness of their algorithm in terms of an indirect measure
called contamination degree. The model proposed by Enns et al.
[18] minimizes connectivity between infectious and susceptible
nodes, and later in a subsequent work, Enns et al. [17] compare the
effectiveness of the model along with some other link removal
approaches. Although Enns et al. [18] present a heuristic proce-
dure, it is unclear if their non-linear programming formulation can
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