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a b s t r a c t

We propose improvements to some of the best heuristic algorithms for optimal product pricing problem
originally designed by Dobson and Kalish in the late 1980s and in the early 1990s. Our improvements are
based on a detailed study of a fundamental decoupling structure of the underlying mixed integer pro-
gramming (MIP) problem and on incorporating more recent ideas, some from the theoretical computer
science literature, for closely related problems. We provide very efficient implementations of the algo-
rithms of Dobson and Kalish as well as our new algorithms. We show that our improvements lead to
algorithms which generate solutions with better objective values and that are more robust in overall
performance. Our computational experiments indicate that our implementation of Dobson–Kalish heur-
istics and our new algorithms can provide good solutions for the underlying MIP problems where the
typical LP relaxations would have more than a trillion variables and more than three trillion constraints.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We study a class of optimal product pricing problems in which
the customer demands, budgets and preferences are encoded by
reservation prices ��the highest price that a customer is willing
and able to pay for a given product. See, for instance, [18–20].
Essentially every company operating in a free market environment
faces a variant of this problem. Therefore, the optimal pricing
problem in revenue management is widespread. A very funda-
mental version of the problem is based on the assumption that the
customers will buy the product that maximizes their individual
surplus (or utility), where the surplus is defined as the difference
between the reservation price of the customer for the product and
the price of the product. In some similar contexts, this model can
also be used for envy� free pricing; see the related models in
[1,3,11]. Maximum utility pricing models are also related to bilevel

pricing problems. For the latter, see, for instance, [15] and the
references therein. The problem considered there is equivalent to
maximum utility product pricing problem, see [16].

From a computational complexity viewpoint, the problem is
NP�hard, see [9,3]; it is NP�hard even to approximate within a
reasonable worst�case ratio, see [11] (even though some special
cases of related optimal pricing problems admit efficient algo-
rithms, see for instance [12]). Currently, the best heuristic algo-
rithms for solving these problems are the ones proposed by
Dobson and Kalish, see [8,9]. While these algorithms are successful
on many instances of the problem, quite often they are not.

We present very efficient implementations of Dobson–Kalish
heuristic algorithms for optimal pricing problems [8,9]. Then, we
consider further improvements based on a decoupling property of
the problem with respect to continuous and binary variables. Our
improvements are based on a detailed study of a fundamental
decoupling structure of the underlying mixed integer programming
(MIP) problem and on incorporating some more recent ideas for
closely related problems from Computer Science, Operations
Research and Optimization. We provide very efficient imple-
mentations of our new algorithms; efficiency, in particular the
speed of the algorithms is critical in practical applications of our
framework. A main reason is our stationary price assumption for
the competitors’ products. Indeed, in practice the competitors may
adjust their prices, as a result, we should be able to re�optimize
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our prices and respond very quickly. Another main reason for the
required speed comes from the sizes of the optimization problems
in nontrivial applications. For the sake of presentation, we make
simplifying assumptions about the optimal pricing problem while
constructing the mathematical model. Indeed, in applications, we
can relax most of the assumptions required by our mathematical
models. However, to do so, we introduce new variables to the
problem. For example, the mathematical model requires that every
customer segment pay the same price for the same product. Sup-
pose that in some application, we would like to offer different prices
to customers who buy their plane tickets four to six weeks in
advance of their trip than others. In this case, we simply create a
new product in our mathematical model to represent these plane
tickets. Another instance arises in product bundling. For each bun-
dle of products, we create a new variable which represents the
bundle. These transformations when properly applied can lead to
tens of thousands of “product variables” in the mathematical model
(which in turn lead to LP relaxations with a huge number of vari-
ables and constraints).

We show that our improvements yield algorithms which gen-
erate solutions with better objective values and that are more
robust in overall performance. Our computational experiments
indicate that our implementation of Dobson–Kalish heuristics and
our new algorithms can provide good solutions for the underlying
MIP problems where the typical LP relaxations would have more
than a trillion variables and more than three trillion constraints. In
the next section, we begin the development of the necessary
notation and the description of some of the fundamental mathe-
matical models we utilize. Then, at the end of next section, we
describe the material in the remaining sections.

2. Notation and fundamental ingredients of the heuristics

Suppose we have n customer segments, with each segment
homogeneous (i.e., customers within a segment behave similarly),
and m products. Rij denotes the reservation price of customer
segment i for product j. Let our decision variables be as follows:

θij≔
1 if customer segmentibuys product j;
0 otherwise;

(

πj≔price of product j:

Customers strive to maximize their utility which in our case
corresponds to consumer surplus given by ðRij�πjÞ for customer i
and product j. For a fixed customer segment i, if the consumer
surplus is negative for every product then customer segment i
would buy nothing. Therefore, customers buy among all products
with nonnegative consumer surplus, the one with the largest
surplus. We are modeling the problem from the viewpoint of one
fixed company with products 1;2;…;m. To represent the com-
peting companies' products, we assume that the prices of their
competing products are known to us. We denote by CSi (which is
part of the data for our optimization problem), the maximum
surplus for customer segment i across all competitor products.
Then the constraints that model the buying behaviour are:

ðRij�πjÞθijZRikθij�πk; 8ka j;

and

ðRij�πjÞθijZCSiθij; 8 j;
respectively. Note that we may replace Rij by max Rij�CSi;0

� �
for

every i; j and assume without loss of generality that CSi ¼ 0 for
every i.

Assuming that each customer segment buys at most one type of
product, and each customer buys at most one unit of a product, and

denoting by Ni the number of customers in segment i, the problem
can be expressed as the following nonlinear mixed� integer pro-
gramming problem:

max
Xn
i ¼ 1

Xm
j ¼ 1

Niπjθij;

s:t: ðRij�πjÞθijZRikθij�πk; 8 j; 8ka j; 8 i;
ðRij�πjÞθijZ0; 8 j; 8 i;Xm
j ¼ 1

θijr1; 8 i;

θijAf0;1g; 8 i; j;
πjZ0; 8 j: ð1Þ

Note that the second group of constraints (arising from the elim-
ination of CSi) are very similar to the first group of constraints.
Indeed, the second group of constraints can be removed from the
formulation by introduction of a dummy product indexed zero,
with price set equal to zero. We will see this again shortly when we
expose the underlying network structure in the above formulation.

The assumptions stipulated above are not very restrictive in prac-
tice as there are ways of relaxing them bymodifying the interpretation
of the variables; for example, production costs can be incorporated in
the objective functionwithout destroying the important mathematical
structures of (1). Some of the classical work in the area explicitly
included fixed costs. Adding production costs (fixed and/or variable
unit costs) to our model does not change the applicability of our
algorithms. This is due to the fact that in making assignment decisions
(assigning a customer segment to a product), our algorithms evaluate
the whole objective function for that assignment/reassignment. As a
result, feasible solutions of the problem (1) will be correctly evaluated
if we change the objective function of the problem allowing fixed
costs. Moreover, the transformations we made in relation to CSi are
indeed still valid in this case.

The assumption about the competitors' prices being stationary
and known to us, can also be handled in practice, as long as we are
able to reoptimize our prices very quickly (for details, see [19–21]).
This provides more motivation for having very fast and effective
heuristic algorithms with good re-optimization properties. As we
have mentioned in the Introduction, our model is closely related to
envy-free pricing models. Considering Walrasian Equilibrium
Models (going back at least to Walras in 1874, see [22]), equili-
brium prices should be chosen so that

(i) customers have no incentive to change their decision;
(ii) the company has no incentive to change its prices.

At an optimal solution of our problem (1), item (i) is satisfied
due to the fact that every customer who buys a product, buys a
product for which the customer has the maximum possible posi-
tive surplus. Item (ii) is satisfied, due to the fact that the total
revenue/profit for the company is maximized and no further
change to the prices can increase the current revenue/profit.

For a fixed θAf0;1gn�m such that
Pm

j ¼ 1 θijr1, 8 i, the problem
(1) becomes an LP problem (on variables π) with a totally unim-
odular (TUM) coefficient matrix. The dual of this LP is equivalent to
a shortest path problem, where there are ðmþ1Þ nodes (a node for
each product and a dummy product). Let 0 denote the dummy
product node. Assign arc lengths:

rkj≔ min
iACj

Rij�Rik
� �

;

r0j≔ min
iACj

Rij
� �

;

where Cj≔fi : θij ¼ 1g and B≔fj : Cja∅g. Note that rkj for kAf
1;2;…;mg may be negative and we utilize the usual convention
that the minimum over an empty set is þ1. Then, this dual LP
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