
Technical note: Split algorithm in O(n) for the capacitated vehicle
routing problem

Thibaut Vidal
Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) Rua Marquês de São Vicente, 225 – Gávea,
Rio de Janeiro – RJ 22451-900, Brazil

a r t i c l e i n f o

Available online 11 December 2015

Keywords:
Vehicle routing problem
Large neighborhood search
Split algorithm
Cluster-first route-second heuristic

a b s t r a c t

The Split algorithm is an essential building block of route-first cluster-second heuristics and modern
genetic algorithms for vehicle routing problems. The algorithm is used to partition a solution, repre-
sented as a giant tour without occurrences of the depot, into separate routes with minimum cost. As
highlighted by the recent survey of Prins et al. [18], no less than 70 recent articles use this technique. In
the vehicle routing literature, Split is usually assimilated to the search for a shortest path in a directed
acyclic graph G and solved in OðnBÞ using Bellman's algorithm, where n is the number of delivery points
and B is the average number of feasible routes that start with a given customer in the giant tour. Some
linear-time algorithms are also known for this problem as a consequence of a Monge property of G. In
this paper, we highlight a stronger property of this graph, leading to a simple alternative algorithm in
OðnÞ. Experimentally, we observe that the approach is faster than the classical Split for problem instances
of practical size. We also extend the method to deal with a limited fleet and soft capacity constraints.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The algorithm of Prins [16] was an important milestone for the
vehicle routing problem (VRP): it was the first hybrid genetic
algorithm with local search to outperform classical tabu searches
at a time when such methods were predominant. One main
ingredient of its success was its approach to solution representa-
tion and recombination. Until the 2000s, combining two solutions
was considered a difficult task, because simple crossover operators
had a tendency to produce infeasible and unbalanced routes.
To meet this challenge, [16] represented the solution as a per-
mutation of visits, a “giant tour”, and relied on a dynamic-
programming-based decoder, called Split, which optimally inserts
depot visits to obtain complete solutions. This makes it possible to
efficiently use classical crossovers for permutations, since the Split
algorithm is in charge of route delimitations, and the capacity
constraints are implicitly managed during solution decoding.

Ten years on, the literature on population-based methods for
VRPs has grown extensively. Efficient GAs with a complete solu-
tion representation and more advanced crossover operators now
exist for the capacitated VRP (e.g., [15]), a sign that the Split
algorithm is useful but not a necessity. Nevertheless, the approach

of [16] remains simple and generic. The representation as a giant
tour enables to significantly reduce the number of distinct indi-
viduals in the GA, and many side constraints and auxiliary deci-
sions of VRP variants, such as capacity and duration limits, time
windows [22], choices of depots [8], vehicle types [9], or profitable
customers in each route [25] can be handled in the Split algorithm
rather than in the crossover. As such, Split has led to successful
heuristics for a large number of problems, as surveyed in
[9,14,18,21].

The computational efficiency of the Split algorithm for the
Capacitated VRP (CVRP) is the subject of this paper. The CVRP aims
to find minimum-distance routes to service n customer locations
with respective demands q1;…; qn, using a fleet of up tom vehicles
of capacity Q located at a central depot. Here, we consider that
an input solution is given, represented as a giant tour ð1;…;nÞ
(w.l.o.g., the visits are re-indexed by order in the tour). Let di;iþ1 be
the distance between two successive customers, and d0i and di0 be
the distances from and to the depot. All distances and demand
quantities are assumed to be non-negative. The objective of Split is
to partition the giant tour into m disjoint sequences of consecutive
visits. Each such sequence is associated to a route, which origi-
nates from the depot, visits its respective customers, and returns
to the depot. The total distance of all routes should be minimized.
Note that the algorithms of this paper do not require the sym-
metry of the distance matrix or the triangle inequality.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.11.012
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

E-mail address: vidalt@inf.puc-rio.br

Computers & Operations Research 69 (2016) 40–47

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.11.012
http://dx.doi.org/10.1016/j.cor.2015.11.012
http://dx.doi.org/10.1016/j.cor.2015.11.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.11.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.11.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.11.012&domain=pdf
mailto:vidalt@inf.puc-rio.br
http://dx.doi.org/10.1016/j.cor.2015.11.012
http://dx.doi.org/10.1016/j.cor.2015.11.012


Classically, the Split algorithm is reduced to a shortest path
problem between the nodes 0 and n of an acyclic graph G¼ ðV;AÞ,
where V ¼ ð0;…;nÞ, and A contains one arc (i,j) with cost cði; jÞ ¼
d0;iþ1þ

P
k ¼ iþ1;…;j�1dk;kþ1þdj;0 for any feasible route visiting

customers iþ1 to j. In the literature, the shortest path is obtained
in OðnBÞ via a variant of Bellman's algorithm, where B is the
average out-degree of a node in f0;…;n�1g, i.e., the average
number of feasible trips from one node of the giant tour [2,16].
Moreover, for a limited fleet of m vehicles, the propagation of the
labels can be iterated to produce a shortest path with at most m
arcs in OðnmBÞ. Such complexity is suitable for most medium-scale
applications. However, Split can become a computational bottle-
neck for large problems with many deliveries per route, when
used iteratively in a metaheuristic.

To meet this challenge, we will introduce a new Split algorithm
in OðnÞ. Note that some linear-time algorithms are already known
for this shortest path (see [3,5] as the graph G satisfies the Monge
property:

cði1; j1Þþcði2; j2Þrcði1; j2Þþcði2; j1Þ
for all 0r i1o i2o j1o j2rn such that ði1; j2ÞAA; ð1Þ

where cði; jÞ is the cost of an arc (i,j). So far, these methods were not
applied in the VRP literature.

In this paper, we propose a simpler alternative which uses the
fact that the auxiliary graph G satisfies the following stronger
property:

for all 0r i1o i2on; there exists K AR

such that cði1; jÞ�cði2; jÞ ¼ K for all j4 i2 such that ði1; jÞAA: ð2Þ
We show that Property (2) can be used to eliminate dominated
predecessors and retain only good candidates, leading to a very
simple labeling algorithm in OðnÞ which performs well in practice
and can be efficiently used in VRP metaheuristics. The approach is
also extended to produce a solution of the Split problem with a
limited number of vehicles in OðnmÞ, and with soft capacity con-
straints in OðnÞ.

Finally, we compare the practical CPU time of the proposed
method with that of the classical Bellman-based algorithm, using
giant tours built from TSP instances. These instances contain from
n¼29 to 71,009 nodes, and the number of deliveries per route
ranges from 4 to 4000. The linear approach appears to be faster in
most cases, with speedup factors ranging from 0.8 to 400. The
largest speedups are achieved for instances with many deliveries
per route, which can occur in courier delivery, refuse collection,
and meter reading applications.

The remainder of this paper recalls the Bellman-based Split
algorithm in Section 2, introduces the proposed linear Split in
Section 3, discusses its generalization to limited fleets and soft
capacity constraints in Section 4, and reports our computational
experiments in Section 5 To facilitate the use of these algorithms
in future generations of heuristics, a Cþþ implementation of the
methods of this paper is available at https://w1.cirrelt.ca/~vidalt/
en/VRP-resources.html.

2. Bellman-based split algorithm

Split is traditionally based on a simple dynamic programming
algorithm, which enumerates the nodes in topological order and,
for each node t, propagates its label to all successors i such that
ðt; iÞAA. The presentation in Algorithm 1 is similar to that of [16].
The arc costs are not preprocessed but directly computed in the
inner loop. This specific algorithm was used as a benchmark in our
computational experiments in Section 5.

Algorithm 1. Classical Split algorithm.

At the end of each iteration t (lines 5–16 of Algorithm 1), p½t�
contains the cost of a shortest path from 0 to t. The array of pre-
decessors pred is maintained throughout the search so that we can
retrieve the solution at the end of the algorithm.

3. Split in linear time

This section will introduce a more efficient Split algorithm. As
in the classical Split, the arc costs of the underlying graph are not
pre-processed. We will describe, in turn, some auxiliary data
structures, the data for a numerical example, and the proposed
algorithm.

Preliminaries: We define for iAf1;…;ng the cumulative distance
D½i� and cumulative load Q ½i� as follows:

D½i� ¼
Xi�1

k ¼ 1

dk;kþ1 ð3Þ

Q ½i� ¼
Xi

k ¼ 1

qk: ð4Þ

These values can be preprocessed and stored in OðnÞ at the
beginning of the algorithm. For io j, the cost cði; jÞ of an arc (i,j) is
the cost of leaving the depot, visiting customers ðiþ1;…; jÞ, and
returning to the depot, computed as

cði; jÞ ¼ d0;iþ1þD½j��D½iþ1�þdj;0; ð5Þ
and the arc (i,j) exists if and only if the route is feasible, i.e.,
Q ½j��Q ½i�rQ .

Our algorithm also relies on a double-ended queue, denoted Λ,
that supports the following operations in Oð1Þ:
front–accesses the oldest element in the queue;
front2–accesses the second-oldest element in the queue;
back–accesses the most recent element in the queue;
push_back–adds an element to the queue;
pop_front–removes the oldest element in the queue;
pop_back–removes the newest element in the queue.

T. Vidal / Computers & Operations Research 69 (2016) 40–47 41

https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html
https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html


Download English Version:

https://daneshyari.com/en/article/474581

Download Persian Version:

https://daneshyari.com/article/474581

Daneshyari.com

https://daneshyari.com/en/article/474581
https://daneshyari.com/article/474581
https://daneshyari.com

