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a b s t r a c t

A signed graph, i.e., an undirected graph whose edges have labels in f�1; þ1g, is balanced if it has no
negative cycles. Given a signed graph, we are interested in a balanced induced subgraph of maximum
order (the MBIS problem). In the present work, we propose a greedy approach for the MBIS problem that is
based on the progressive shortening of negative cycles, and that generalizes the well-known minimum-
degree greedy heuristic for the maximum independent set problem. An extensive computational study
on three classes of instances shows that the new algorithm outperforms the reference heuristics pro-
posed in the literature.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A signed graph S¼ ðG;σÞ is an undirected graph G¼ ðV ; EÞ
whose edges are labeled either with þ1 (positive edges) or with
�1 (negative edges) by a signature function σ : E-f�1; þ1g. See
[40,41] for a comprehensive survey. The sign of a subset C of edges,
e.g., a path or a cycle, is given by the product of the signs of the
edges in C. From a theoretical perspective, signed graphs and their
incidence matrices are deeply connected with matroid theory
[17,35].

Following the definition by Harary [22], a signed graph is said
to be balanced if it has no negative cycles. Harary also proved that
a signed graph is balanced if and only if the set of negative edges is
a possibly empty cut. Given a signed graph, the MAXIMUM BALANCED

INDUCED SUBGRAPH problem (MBIS) asks for finding a balanced induced
subgraph (BIS) of maximum order. The opposite numerical pro-
blem, i.e., finding the smallest number of vertices whose deletion
makes the signed graph balanced, was introduced by Harary [23]
and called point index for structural balance. Nowadays that num-
ber is known as the vertex frustration number; see [42].

Several problems originating in different domains, even far
away from each other, can be modeled as MBIS. In social network-
ing, for example, relationships between individuals can be repre-
sented by a signed graph where vertices are persons and positive
(negative) edges express friendships (hostility). Based on the
structural balance theory [10], positive cycles are supposed to
indicate stable social situations, whereas negative cycles are

supposed to be unstable. Hence the maximum balanced subgraph
gives a measure of the cohesion of the social group.

Another application lies in the context of portfolio analysis [24].
In that case, the vertices of a signed graph denote stocks, and a
positive (negative) edge represents the direct (inverse) correlation
between its extremes. It is generally believed that the larger is the
maximum balanced induced subgraph, the more predictable is the
behavior of the portfolio.

MBIS is polynomial on series parallel graphs [4] but in general is
NP-hard as it admits the odd cycle transversal (also known as
maximum bipartite subgraph or vertex bipartization) and the
maximum independent set (MIS) problems as special cases, the
former with applications, e.g., in VLSI design [2,12], DNA sequen-
cing [16] and computational biology [43], the latter arising as a
subproblem or as a relaxation of many 0–1 integer problems (as a
reference, think about the solution of the MIS problem on the so-
called conflict graph, which is at the basis of many general pre-
processing and probing techniques for integer linear programming
problems [3,8]).

In particular, the odd cycle transversal problem on a graph G
corresponds to the MBIS problem on the signed graph S¼ ðG;σÞ
obtained from G by signing all its edges as negative. In fact, odd
cycles of G correspond to negative cycles of S, and a minimum odd
cycle transversal on G corresponds to a smallest set of vertices to
be removed from S to make it balanced. On the other hand, the MIS

problem on a graph G corresponds to MBIS on the signed graph
obtained from G by signed expansion [40, Section 7C], i.e., by
doubling its edges and assigning opposite signs to each pair of
parallel edges.

Our interest in the MBIS problemwas originally motivated by the
study of an equivalent problem known in the domain of integer
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programming as MAXIMUM EMBEDDED REFLECTED NETWORK (MERN).
Nowadays, the most successful methods for solving an integer
linear program work by iteratively tightening (cutting planes) or
recursively decomposing (branch-and-bound) a polyhedron which
represents a continuous formulation of the problem. Such algo-
rithms stop as soon as an integer extreme point is reached and its
optimality is proven. When one of such methods is applied, the
cases where the polyhedron is integral (or at least has an integer
extreme point that is optimal for a given objective function) are of
particular interest because the integer linear problem boils down
to a continuous linear one. The integrality of the polyhedron
depends on the structure of the coefficients of the corresponding
integer linear program. A well-known family of such special
structures is that of totally unimodular (TU) matrices: one of the
famous theorems by Hoffman–Kruskal [27] states that the poly-
hedron P ¼ fxA IRn∣b0rAxrb; c0rxrcg, with Aðm� nÞ, is inte-
gral for every integral b;b0A IRm and c; c0A IRn if and only if A is a
TU matrix. Indeed, the recognition of special structures in the
coefficient matrix of (integer) linear programs also helps in the
solution of large-scale continuous models [6,7] and, on the other
hand, can be exploited in the strategic choice of constraints to be
either relaxed in a Lagrangian relaxation scheme [5] or convexified
in a Dantzig–Wolfe decomposition.

Total unimodularity can be checked in polynomial time [36];
but most formulations of combinatorial optimization problems do
not exhibit a TU matrix. We are therefore interested in finding a
maximum embedded TU submatrix. A subclass of TU matrices is
that of reflected network matrices; see Section 3. Since, for any
given f0; 71g-matrix A, a signed graph SA can be defined such that
any reflected network submatrix of A obtained by row deletion
corresponds to a balanced induced subgraph of SA and vice versa
[25,26], the MERN problem, i.e., the task of finding a maximum
reflected network submatrix by deleting rows, is, in combinatorial
terms, the MBIS problem. That explains our interest in MBIS.

In this paper we propose a greedy heuristic for MBIS that gen-
eralizes the minimum-degree greedy algorithm for MIS. The heur-
istic is based on a graph transformation (the shortening of nega-
tive cycles) that preserves balance of any induced subgraph that is
balanced in the original graph, and makes the MBIS easier to solve.
A broad computational experience shows that the heuristic largely
outperforms the best previous algorithm for MBIS.

The remainder of the paper is organized as follows. The graph
terminology used throughout the paper and the main properties of
signed graphs are introduced in Section 2. In Section 3 we describe
the link between reflected networks and signed graphs and briefly
survey the approaches for solving the MBIS problem. In Section 4
we give the details of a heuristic for MBIS and Section 5 illustrates
our computational experience. Conclusions are sketched in
Section 6.

2. Preliminaries

2.1. Graphs

Let G¼ ðV ; EÞ be a finite undirected graph with vertex set V ¼
f1;…;ng and edge set E that is a set of unordered pairs of distinct
vertices. The density of G is given by 2jEj=ðjV j ðjV j �1ÞÞ. The
subgraph of G induced by the set of vertices UDV is the graph
G½U� ¼ ðU; fuvAE∣u; vAUgÞ. The subgraph of G induced by the set of
edges FDE is the graph G½F� ¼ ðfv∣( uvAFg; FÞ. The set NðuÞ ¼ f
vAV ∣(uvAEg of vertices adjacent to uAV is the neighborhood of u.
The cardinality of N(u) is the degree d(u) of u. A path is a non-
empty graph P ¼ ðU; FÞ of the form U ¼ fu0;u1;…;ukg with uiauj

for 0r ia jrk, and F ¼ fu0u1;…;uk�1ukg. A cycle is a graph C ¼ ð
U; FÞ of the form U ¼ fu0;u1;…;ukg with uiauj for 0r ia jrk, and

F ¼ fu0u1;…;uk�1uk;uku0g. In the following, we denote by u0u1⋯
uk and u0u1⋯uku0 the path P and the cycle C, respectively. The
length of a cycle C ¼ ðU; FÞ is the number jU j of its vertices (or
edges). An edge which joins two vertices of a cycle but is not itself
an edge of the cycle is a chord. A cycle without chords is said to be
chordless and is usually called a hole. In the literature, chordless
cycles commonly refer to cycles of length at least four; in this
paper, we extend the definition also to cycles of length two (par-
allel pairs of edges) and three (triangles).

Given a bipartition fU;Wg of V, the (possibly empty) set EðU;
WÞ ¼ fuvAE∣uAU; vAWg is called a cut. If U ¼ fug, the cut EðU;V
�uÞ is called the star of u and is denoted by E(u). A spanning tree of
G¼ ðV ; EÞ is a connected subgraph T ¼ ðV ; ET Þ such that T is acyclic.
A set I of vertices is independent (or stable) if no two elements in I
are adjacent. The stability number αðGÞ is the cardinality of the
largest independent set of G.

In the following, we denote with CðGÞ the set of cycles of G and
with HðGÞ the set of chordless cycles of G. With a slight extension
of notation, CðuvÞ and CðuÞ (HðuvÞ and HðuÞ) denote the sets of
(chordless) cycles passing through edge uv and vertex u, respec-
tively. Definitions not reported in this section can be found in
Diestel's book [14].

2.2. Signed graphs

Let S¼ ðG;σÞ be a signed graph. G¼ ðV ; EÞ is called the under-
lying graph of S. A negative edge uv and the set of negative edges
of S are denoted by ðuv; �Þ and E� respectively. Analogously, ðuv;
þÞ and Eþ denote (the set of) positive edges. A signed graph
without negative edges and a vertex without incident negative
edges are called all positive. In particular, we denote with Sþ the
underlying subgraph ðV ; E⧹E� Þ, i.e., the subgraph of S obtained by
removing all the negative edges. Similar notation and definitions
are used for negative vertices and negative graphs. In all the fig-
ures of the paper, negative (positive) edges are depicted by dashed
(solid) lines.

The set of negative (chordless) cycles of S is denoted by C� ðSÞ
(by H� ðSÞ). The positive counterparts are referred accordingly.

In the following, we only refer to signed graphs with no loops,
half-edges and loose edges. Besides, we slightly generalize the
definition of the underlying graph G by allowing parallel edges (of
opposite sign in S): for the sake of conciseness we say that uv is a
parallel pair of edges if both ðuv; �Þ and ðuv; þÞ are in E, and we
indicate with EP the set of parallel edges of S. Notice that any
parallel edge pair uv counts two in both d(u) and d(v) and is a
negative chordless cycle of length two. It follows that any cycle
longer than two and containing parallel pairs of edges is not
chordless.

Among the properties of signed graphs we are interested in
balance and switching equivalence. A signed graph S is balanced if it
has one of the following equivalent properties:

� S has no negative cycles;
� E� is a (possibly empty) cut [22];
� all paths joining each pair of distinct vertices u; v have the same

sign [22];
� there exists a vertex signature function γ : V-f�1; þ1g such

that σðuvÞ ¼ γðuÞγðvÞ for each edge uv.

Switching the set UDV consists in negating the signs of the
edges in the set EðU;V⧹UÞ. In particular, switching a vertex u
reverses the signs of the edges in the star E(u). We denote by SU

the signed graph obtained by switching U in S. We say S and SU are
switching equivalent. Switching equivalence is an equivalence
relation on signed graphs [40]. In particular, switching any UDV
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