Computers & Operations Research 68 (2016) 16-29

Contents lists available at ScienceDirect

compu
& operations
research

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

—

® CrossMark

Multi-neighborhood local search optimization for machine
reassignment problem

Zhuo Wang, Zhipeng Lii, Tao Ye

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

ARTICLE INFO ABSTRACT

Available online 31 October 2015 As the topic of the Google ROADEF/EURO Challenge 2012, machine reassignment problem (denoted as
MRP) is an important optimization problem in load balance of cloud computing. Given a set of machines
and a set of processes running on machines, the MRP aims at finding a best process-machine reas-
signment to improve the usage of machines while satisfying various hard constraints. In this paper, we
present a metaheuristic algorithm based on multi-neighborhood local search (denoted as MNLS) for
solving the MRP. Our MNLS algorithm consists of three primary and one auxiliary neighborhood struc-
tures, an efficient neighborhood partition search mechanism with respect to the three primary neigh-
borhoods and a dynamic perturbation operator. Computational results tested on 30 benchmark instances
of the ROADEF/EURO Challenge 2012 and comparisons with the results in the challenge and the literature
demonstrate the efficacy of the proposed MNLS algorithm in terms of both effectiveness and efficiency.

Keywords:

Machine reassignment

Google ROADEF/EURO Challenge
Local search

Neighborhood structure
Partition search

Furthermore, several key components of our MNLS algorithm are analyzed to gain an insight into it.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cloud computing [1] has emerged as a new technology to
support massive computing and storage task. A number of cloud
computing services are currently being offered, such as Google
Docs and Amazon Elastic Computing Cloud. A cloud computing
platform is maintained by a data center which consists of a large
pool of computing resources and storage devices shared by end
users. As the services are expanding quickly, the issue of resource
consumption of data centers is becoming increasingly important.
Therefore, allocating computing resources and user requests in a
cost-efficient way to improve the usage of servers plays a key role
in cloud computing [2].

Aiming at finding an optimization solution to improve the
usage of a set of machines, a challenging problem denoted by
machine reassignment problem (MRP) has been proposed as the
subject of the ROADEF/EURO Challenge 2012 by Google [3]. The
MRP consists of reassigning processes among servers to improve
the usage of machine resources while satisfying various con-
straints. The constraints which cannot be violated include capacity
constraints, conflict constraints, spread constraints, dependency
constraints and transient usage constraints. The objective function

* Corresponding author.
E-mail addresses: 575880296@qq.com (Z. Wang),
zhipeng.lv@hust.edu.cn (Z. Lii), yeetao@gmail.com (T. Ye).

http://dx.doi.org/10.1016/j.cor.2015.10.015
0305-0548/© 2015 Elsevier Ltd. All rights reserved.

modeling the efficiency of the reassignment incorporates load
cost, balance cost and three kinds of migration costs of processes.

For the MRP, several state-of-the-art algorithms have been
proposed in the literature. Mehta et al. [4] introduced a constraint
programming (CP) formulation of the problem, and proposed a CP-
based large neighborhood search to address it. Malitsky et al. [5]
further studied the impact of the parameters used in the proposed
CP-based large neighborhood search. Gavranovié¢ et al. [6] pro-
posed a variable neighborhood search which consists of four kinds
of neighborhood structures. Brandt et al. [7] proposed a large
neighborhood search algorithm that uses a constraint program-
ming to find improving solutions. Masson et al. [8] put forward a
multi-start iterated local search which explores two kinds of
neighborhoods. Portal [9] proposed a randomized local search
based on simulated annealing (SA) [10] for solving the MRP. Jas-
kowski et al. [11] proposed a hybrid metaheuristic approach which
consists of a fast greedy hill climber and a large neighborhood
search. Portal et al. [12] put forward a simulated annealing algo-
rithm using two neighborhoods to address the MRP. Lopes et al.
[13] introduced a linear integer programming (IP) formulation for
the MRP, and proposed an iterated local search algorithm for sol-
ving this problem.

The MRP belongs to the family of the assignment problem [14-
16]. In particular, there is a similar theoretical assignment problem
of MRP in the literature which is called generalized assignment
problem (GAP) [17,18]. The GAP deals with a minimum cost

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.10.015
http://dx.doi.org/10.1016/j.cor.2015.10.015
http://dx.doi.org/10.1016/j.cor.2015.10.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.015&domain=pdf
mailto:575880296@qq.com
mailto:zhipeng.lv@hust.edu.cn
mailto:yeetao@gmail.com
http://dx.doi.org/10.1016/j.cor.2015.10.015
http://dx.doi.org/10.1016/j.cor.2015.10.015

Z. Wang et al. / Computers & Operations Research 68 (2016) 16-29 17

assignment of a number of jobs to a set of agents such that every
job is assigned to exactly one agent and the resource constraint for
each agent is satisfied. It has many practical applications, such as
vehicle routing [19-21] and facility location [22-24], and has been
extensively studied in the literature. The approaches for GAP can
be divided into two main categories: metaheuristic algorithms and
exact algorithms.

The metaheuristic algorithms for solving the GAP include: a
variable depth search algorithm by Amini and Racer [25]; a tabu
search (TS) [26] and simulated annealing by Osman [27]; a genetic
algorithm [28] by Chu and Beasley [29]; variable depth search
algorithms by Yagiura et al. [30,31]; a guided genetic algorithm by
Lau and Tsang [32]; an adaptive search heuristic based on greedy
randomized adaptive search procedure (GRASP) [33] and Max-Min
ant system (MMAS) [34] by Lourenco and Serra [35]; an ejection
chain approach by Yagiura et al. [36]; a path relinking approach
with ejection chains by Yagiura et al. [37]; differential evolution
algorithms by Tasgetiren et al. [38]; a bees algorithm with an
ejection chain neighborhood by Ozbakir et al. [39] and so on.

Exact algorithms for GAP are mainly based on branch and
bound framework, e.g., a branch and bound algorithm by solving a
series of binary knapsack problems to determine the bounds by
Ross and Soland [40], a new algorithm employing both column
generation and branch and bound by Savelsbergh [41], a breadth-
first branch and bound algorithm by Haddadi and Ouzia [42].
Woodcock and Wilson [43] proposed a hybrid algorithm com-
bining both branch and bound and tabu search for solving the GAP.

In this paper, we propose a multi-neighborhood local search
based metaheuristic algorithm, denoted as MNLS, for solving the
machine reassignment problem. Our algorithm integrates several
different neighborhood structures, two of which are usually
employed in the literature for solving the GAP and the other two
are tailored for the MRP. In addition, a neighborhood partition
search mechanism and a dynamic perturbation operator are
introduced to enhance the search efficiency of the MNLS.

The remaining part of the paper is organized as follows. Section
2 presents the problem description and a mathematical formula-
tion of the MRP. In Section 3, we give the main framework and
specific components of our MNLS algorithm in details. In Section 4,
several key components of our algorithm are investigated. In
Section 5, we present computational results of our MNLS algo-
rithm and extensive comparisons with the results in both the
challenge and the literature. The paper is concluded in Section 6.

2. Machine reassignment problem
2.1. Problem description

The machine reassignment problem considered in this paper
consists of reassigning processes to machines in accordance with a
given set of constraints. A machine has several kinds of resources
such as CPU and RAM, and runs processes which consume these
resources. Initially, each process is allocated to a machine. In order
to improve the usage of machines, processes can be moved from
one machine to another. Two types of constraints are defined:
those which must be strictly satisfied under any circumstances
(hard constraints) and those which are not necessarily satisfied
but whose violations should be desirably minimized (soft con-
straints). Feasible moves are limited by hard constraints and have
costs composed of violations of soft constraints. A reassignment
that satisfies all hard constraints is called a feasible solution. The
objective of this problem is to find a feasible solution which
minimizes the total weighted violations of soft constraints.

Let M = {my,mj, ...,m;} be the set of machines, and P= {p,, p,
,....Dw} the set of processes. A solution of this problem can be

represented by a vector Map of length w, where Map(p) corre-
sponds to the machine assigned to process p. Additionally, let
Mapoy be the given initial solution, so Mapy(p) is the original
machine assigned to process p correspondingly.

A number of constant and variable symbols are presented in
Table 1. Note that bool is the truth indicator function which takes
value of 1 if the given proposition is true and O otherwise. With
these notations, we can describe the problem in a formal way.

The five hard constrains are:

® H,. Capacity constraints. The usage of a machine for every
resource cannot exceed its corresponding capacity.

vmeM,reR U(m,r)<C(m,r)

H,. Conflict constraints. Processes of the same service must run
on distinct machines.

Vs eS, (p;.p)) €52, p; # p; = Map(p;) # Map(p;)

Hs. Spread constraints. The number of locations where pro-
cesses of the same service run cannot be less than a given
minimum limit.

vseS,» min(1, | {p e s|Map(p) € I}|) = S_min(s)
lel

H,. Dependency constraints. If a service s* depends on a service
s®, i.e., (s%,sP) e SD, then each process of s® should run in the
neighborhood of a s process.

v(s?,s) e SD, vp? e 5%, 3pP e s® = NE(Map(p®)) = NE(Map(p®))

® Hs. Transient usage constraints. When a process is moved from
one machine to another, some resources are consumed twice.
For example, disk space is occupied on both machines when a
process is removed from one machine to another. Let TR = R be
the subset of resources which need transient usage, i.e., the
processes using resources in TR require capacity on both the
original machine and the current machine. The transient usage
constraints are:

vme M, tr e TR, U(m, tr)+ TU(m, tr) < C(m, tr)

The five soft constraints are:

® S;.Load cost. SC(m,r) is the safety capacity of a resource r € R on
a machine m e M. The load cost is defined per resource and
corresponds to the used capacity above the safety capacity:

f1m =" max(0,U(m,r)—SC(m,r)

meM

® S,. Balance cost. As having available CPU resource without
having available RAM resource is useless for future assignments,
one objective of this problem is to balance available resources.
The idea is to achieve a given target on the available ratio of two
different resources [3]. B< R?x N is the set of triples. For a given
triple b = (3, 15, target?) B, the balance cost is:

fab)=">" max(0, target” - A(m,r})—A(m,r5))

meM

® S;3. Process move cost. Some processes are painful to move. To
model this soft constraint a process move cost is defined:

Download English Version:

https://daneshyari.com/en/article/474590

Download Persian Version:

https://daneshyari.com/article/474590

Daneshyari.com

https://daneshyari.com/en/article/474590
https://daneshyari.com/article/474590
https://daneshyari.com

