
Construct, Merge, Solve & Adapt A new general algorithm
for combinatorial optimization

Christian Blum a,b,n, Pedro Pinacho a,c, Manuel López-Ibáñez d, José A. Lozano a

a Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU, San Sebastian, Spain
b IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
c Escuela de Informática, Universidad Santo Tomás, Concepción, Chile
d Alliance Manchester Business School, University of Manchester, UK

a r t i c l e i n f o

Available online 2 November 2015

Keywords:
Metaheuristics
Exact solver
Hybrid algorithms
Minimum common string partition
Minimum covering arborescence

a b s t r a c t

This paper describes a general hybrid metaheuristic for combinatorial optimization labelled Construct,
Merge, Solve & Adapt. The proposed algorithm is a specific instantiation of a framework known from the
literature as Generate-And-Solve, which is based on the following general idea. First, generate a reduced
sub-instance of the original problem instance, in a way such that a solution to the sub-instance is also a
solution to the original problem instance. Second, apply an exact solver to the reduced sub-instance in
order to obtain a (possibly) high quality solution to the original problem instance. And third, make use of
the results of the exact solver as feedback for the next algorithm iteration. The minimum common string
partition problem and the minimum covering arborescence problem are chosen as test cases in order to
demonstrate the application of the proposed algorithm. The obtained results show that the algorithm is
competitive with the exact solver for small to medium size problem instances, while it significantly
outperforms the exact solver for larger problem instances.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we introduce a general algorithm for combinatorial
optimization labelled Construct, Merge, Solve & Adapt (CMSA). The
proposed algorithm belongs to the class of hybrid metaheuristics
[1–4], which are algorithms that combine components of different
techniques for optimization. Examples are combinations of meta-
heuristics with dynamic programming, constraint programming, and
branch and bound. In particular, the proposed algorithm is based on
the following general idea. Imagine it were possible to identify a
substantially reduced sub-instance of a given problem instance such
that the sub-instance contains high-quality solutions to the original
problem instance. This would allow applying an exact technique—
such as, for example, a mathematical programming solver—with little
computational effort to the reduced sub-instance in order to obtain a
high-quality solution to the original problem instance. This is for the
following reason. For many combinatorial optimization problems the
field of mathematical programming—and integer linear programming
(ILP) in particular—provides powerful tools; for a comprehensive

introduction into this area see, for example, [5]. ILP-solvers are in
general based on a tree search framework but further include the
solution of linear programming relaxations of a given ILP model for
the problem at hand (besides primal heuristics) in order to obtain
lower and upper bounds. To tighten these bounds, various kinds of
additional inequalities are typically dynamically identified and added
as cutting planes to the ILP-model, yielding a branch & cut algorithm.
Frequently, such ILP approaches are highly effective for small to
medium sized instances of hard problems, even though they often do
not scale well enough to large instances relevant in practice. Therefore,
in those cases inwhich a problem instance can be sufficiently reduced,
a mathematical programming solver might be very efficient in solving
the reduced problem instance.

1.1. Related work

The general idea described above is present in several works from
the literature. For example, it is the underlying idea of the general
algorithm framework known as Generate-And-Solve (GS) [6–9]. In
fact, our algorithm can be seen as an instantiation of this framework.
The GS framework decomposes the original optimization problem into
two conceptually different levels. One of the two levels makes use of a
component called Solver of Reduced Instances (SRI), in which an exact
method is applied to sub-instances of the original problem instance
that maintain the conceptual structure of the original instance, that is,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.10.014
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: christian.blum@ehu.es (C. Blum),

ppinacho@santotomas.cl (P. Pinacho),
manuel.lopez-ibanez@manchester.ac.uk (M. López-Ibáñez),
ja.lozano@ehu.es (J.A. Lozano).

Computers & Operations Research 68 (2016) 75–88

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.10.014
http://dx.doi.org/10.1016/j.cor.2015.10.014
http://dx.doi.org/10.1016/j.cor.2015.10.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.014&domain=pdf
mailto:christian.blum@ehu.es
mailto:ppinacho@santotomas.cl
mailto:manuel.lopez-ibanez@manchester.ac.uk
mailto:ja.lozano@ehu.es
http://dx.doi.org/10.1016/j.cor.2015.10.014
http://dx.doi.org/10.1016/j.cor.2015.10.014


any solution to the sub-instance is also a solution to the original
instance. At the other level, a metaheuristic component deals with the
problem of generating sub-instances that contain high quality solu-
tions. In GS, the metaheuristic component is called Generator of
Reduced Instances (GRI). Feedback is provided from the SRI component
to the GRI component, for example, by means of the objective function
value of the best solution found in a sub-instance. This feedback serves
for guiding the search process of the GRI component.

Even though most existing applications of the GS framework are
in the context of cutting, packing and loading problems—see, for
example, [7–11]—other successful applications include the ones to
configuration problems arising in wireless networks [12–14]. More-
over, it is interesting to note that the applications of GS published to
date generate sub-instances in the GRI component using either
evolutionary algorithms [10,14] or simulated annealing [11,13].
Finally, note that in [10] the authors introduced a so-called density
control operator in order to control the size of the generated sub-
instances. This mechanism can be seen as an additional way of
providing feedback from the SRI component to the GRI component.

Apart from the GS framework, the idea of solving reduced
problem instances to optimality has also been explored in earlier
works. In [15,16], for example, the authors tackle the classical
traveling salesman problem (TSP) by means of a two-phase
approach. The first phase consists in generating a bunch of high-
quality TSP solutions using a metaheuristic. These solutions are
then merged, resulting in a reduced problem instance, which is
then solved to optimality by means of an exact solver. In [17] the
authors present the following approach for the prize-collecting
Steiner tree problem. First, the given problem instance is reduced
in such a way that it still contains the optimal solution to the
original problem instance. Then, a memetic algorithm is applied to
this reduced problem instance. Finally, a mathematical program-
ming solver is applied to find the best solution to the problem
instance obtained by merging all solutions of the first and the last
population of the memetic algorithm. Massen et al. [18,19] use an
ant colony optimization algorithm to generate a large number of
feasible routes for a vehicle routing problem with feasibility con-
straints, then apply an exact solver to a relaxed set-partitioning
problem in order to select a subset of the routes. This subset is
used to bias the generation of new routes in the next iteration.

Finally, note that a first, specific, application of the general
algorithm proposed in this work has been published in [20] in the
context of the minimum weight arborescence problem.

1.2. Contribution of this work

Even though—as outlined above—there is important related work
in the literature, the idea of iteratively solving reduced problem
instances to optimality has not yet been explored in an exhaustive
manner. In this work we introduce a generally applicable algorithm
labelled Construct, Merge, Solve & Adapt (CMSA) for tackling combi-
natorial optimization problems. The algorithm can be seen as a specific
instantiation of the GS framework. It is designed to take profit from ILP
solvers such as CPLEX even in the context of large problem instances
to which these solvers can not be applied directly. In particular, the
main feature of the algorithm is the generation of sub-instances of the
original problem instance by repeated probabilistic solution con-
structions, and the application of an ILP solver to the generated sub-
instances. Hereby, the way of generating sub-instances by merging the
solution components found in probabilistically constructed solutions
distinguishes our algorithm from other instantiations of the GS fra-
mework from the literature. This feature is actually quite appealing,
because our algorithm can easily be applied to any problem for which
(1) a constructive heuristic and (2) an exact solver are known.

We consider two test cases for the proposed algorithm: (1) the
minimum common string partition (MCSP) problem [21], and a

minimum covering arborescence (MCA) problem, which is an
extension of the problem tackled in [20]. For both problems, ILP
solvers such as CPLEX are very effective in solving small to med-
ium size problem instances. However, their performance deterio-
rates (1) in the context of the MCSP problem when the length of
the input strings exceeds 600, and (2) in the context of the MCA
problem when the number of nodes of the input graph exceeds
1000. We will show that the CMSA algorithm is a new state-of-
the-art algorithm for the MCSP problem, especially for benchmark
instances for which the application of CPLEX to the original ILP
model is not feasible. In the context of the MCA problem we will
show that our algorithm is able to match the performance of
CPLEX for small and medium size problem instances. Moreover,
when large size instances are tackled, the algorithm significantly
outperforms a greedy approach.

1.3. Organization of the paper

The remaining part of the paper is organized as follows. The CMSA
algorithm is outlined in general terms in Section 2. The application of
this algorithm to the minimum common string partition problem is
described in Section 3, whereas its application to the minimum cov-
ering arborescence problem is outlined in Section 4. An extensive
experimental evaluation is provided in Section 5. Finally, in Section 6
we provide conclusions and an outlook to future work.

2. Construct, Merge, Solve & Adapt

In the following we assume that, given a problem instance I to
a generic problem P, set C represents the set of all possible com-
ponents of which solutions to the problem instance are composed.
C is henceforth called the complete set of solution components
with respect to I . Note that, given an integer linear (or non-linear)
programming model for problem P, a generic way of defining the
set of solution components is to say that each combination of a
variable with one of its values is a solution component. Moreover,
in the context of this work a valid solution S to I is represented as
a subset of the solution components C, that is, SDC. Finally, set
C0DC contains the solution components that belong to a restricted
problem instance, that is, a sub-instance of I . For simplicity rea-
sons, C 0 will henceforth be called a sub-instance. Imagine, for
example, the input graph in case of the TSP. The set of all edges can
be regarded as the set of all possible solution components C.
Moreover, the edges belonging to a tour S—that is, a valid solution
—form the set of solution components that are contained in S.

The CONSTRUCT, MERGE, SOLVE and ADAPT (CMSA) algorithm works
roughly as follows. At each iteration, the algorithm deals with the
incumbent sub-instance C0. Initially this sub-instance is empty. The
first step of each iteration consists in generating a number of fea-
sible solutions to the original problem instance I in a probabilistic
way. In the second step, the solution components involved in these
solutions are added to C0 and an exact solver is applied in order to
solve C0 to optimality. The third step consists in adapting sub-
instance C0 by removing some of the solution components guided
by an aging mechanism. In other words, the CMSA algorithm is
applicable to any problem for which (1) a way of (probabilistically)
generating solutions can be found and (2) a strategy for solving the
problem to optimality is known.

In the following we describe the CMSA algorithm, which is pseudo-
coded in Algorithm 1, in more detail. The main loop of the proposed
algorithm is executed while the CPU time limit is not reached. It con-
sists of the following actions. First, the best-so-far solution Sbsf is initi-
alized to NULL, and the restricted problem instance (C 0) to the empty set.
Then, at each iteration a number of na solutions is probabilistically
generated (see function ProbabilisticSolutionGeneration(C) in line 6 of

C. Blum et al. / Computers & Operations Research 68 (2016) 75–8876



Download English Version:

https://daneshyari.com/en/article/474593

Download Persian Version:

https://daneshyari.com/article/474593

Daneshyari.com

https://daneshyari.com/en/article/474593
https://daneshyari.com/article/474593
https://daneshyari.com

