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a b s t r a c t

One-to-one multiobjective search in graphs deals with the problem of finding all Pareto-optimal solution
paths between given start and goal nodes according to a number of distinct noncommensurate
objectives. The problem is inherently more complex than single objective graph search. Time require-
ments are dominated by the facts that (a) many different non-dominated labels may need to be explored
for each node; (b) each new label under consideration must be checked for dominance against various
subsets of previously generated labels. This paper describes how a dimensionality reduction technique
can be applied to exact label-setting algorithms, reducing the number of dominance checks and allowing
for much faster multiobjective search. The technique is applied to NAMOAn, a state of the art exact label-
setting multiobjective search algorithm, achieving reductions in time requirements of more than an
order of magnitude over problems in random grids and realistic road maps. Tests include problems with
three, four, and five objectives.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multiobjective (MO) shortest path problems arise in many
fields, such as vehicle path planning [17,39,40], urban transporta-
tion networks [6,9], robot surveillance [7], satellite scheduling [11],
routing in telecommunication networks [5], and route planning in
different contexts [1,3,8,16].

The multiobjective shortest path problem involves finding the
set of all Pareto-optimal solution paths in a graph from a given
start node to a designated goal node (one-to-one problem), or to all
other nodes in the graph (one-to-all problem), according to a
number of distinct noncommensurate objectives. Several
approaches have been proposed to solve this problem. These
include enumerative approaches (label-setting and label-correct-
ing), ranking algorithms, and two-phase algorithms (e.g. see
[4,2,34,35,12,37,31,5]). For the one-to-one problem, where single
start and goal nodes are designated in the graph, label-setting
algorithms are generally the best option for arbitrary start–goal
pairs in large graphs, e.g. navigation queries in road maps. Multi-
objective label-setting algorithms are generally extensions of single
objective ones, and particularly of Dijkstra's algorithm and An [14].
The latter is a variant of the former for one-to-one problems that
uses distance estimates to the goal to improve search efficiency. If
these estimates are lower bounds, then An is an exact algorithm,

i.e. it always returns an optimal solution. The one-to-one version of
Dijkstra's algorithm is a particular case of An with lower bounds
equal to zero.1

Hansen [13] first extended Dijkstra's algorithm to the biobjec-
tive problem, and showed that even with two objectives the
number of Pareto-optimal solution paths can grow exponentially
with solution depth in the worst case. However, there are inter-
esting classes of MO search problems where this worst-case
behavior does not appear [25,28]. Martins [27] provided an exact
label-setting algorithm for the general case, i.e. each label scanned
by the algorithm is Pareto-optimal. Martins proposed selecting the
lexicographically smallest label from the set of pending labels at
each step, in order to guarantee that a Pareto-optimal label is
always selected. Other authors have proposed selecting the mini-
mum according to a linear aggregate function, which has been
reported to be more efficient in practice [15,20]. Several extensions
of An to the multiobjective case have also been proposed. These
include MOAn [36], TC [38], and NAMOAn [26]. The latter has been
proven to be an exact algorithm when provided with lower bound
estimates, and to explore an optimal number of labels. Addition-
ally, it has been formally shown that MOAn does not always explore
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1 The distance estimate functions (used by An) are called heuristic functions in
the Artificial Intelligence literature (e.g. see [10,29]). However, in this paper we
adopt the Operations Research terminology, where the term “heuristic” is used to
designate approximate algorithms. Notice that when distance estimates are lower
bounds, the algorithms considered in this paper (An and NAMOAn) are in fact exact
algorithms.
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an optimal number of labels [30]. Tung and Chew also proposed
using the ideal point of each node n as a lower bound estimate of
the cost of all paths from n to the goal [38]. These ideal points can
be efficiently calculated performing q one-to-all single objective
searches from the goal node in a graph identical to the original one,
but with all arcs reversed (where q is the number of objectives, and
each search optimizes a different objective). Using these lower
bounds, NAMOAn was shown to outperform the other MO exten-
sions of An over problems in random grids and realistic road maps
[21,18] with two objectives.

However, even in this case, time requirements are still an important
limiting factor in the size of problems that exact algorithms can solve
in practice [19,21,23]. This paper describes a dimensionality reduction
technique that speeds up the time performance of multiobjective label-
setting search. Dimensionality reduction was first proposed as a space
saving technique in the development of vector frontier search [24,25], a
multiobjective exact label-setting algorithm that achieved important
reductions in space requirements at the expense of increasing time
requirements. This paper extends this technique, showing that it can
be applied, under reasonable assumptions, to best-first label-setting
algorithms (and to NAMOAn in particular). Results show improve-
ments in time performance. Furthermore, the use of this technique
preserves all the properties of NAMOAn. More precisely, it remains an
exact algorithm when provided with lower bound estimates. In other
words, the proposed technique reduces the time requirements of
NAMOAn, extending the size of MO problems that can be solved
exactly in practice.

This paper is organized as follows. Section 2 reviews important
concepts in MO search. Section 3 describes the dimensionality reduc-
tion technique, and proves its correctness for MO search with lower
bounds under reasonable assumptions. An experimental study is
described in Section 4, and its results are discussed in Section 5.
Finally, some conclusions and future work are outlined.

2. Multiobjective search

The multiobjective search problem can be stated as follows: let
G be a locally finite directed graph G¼ ðN;A; c!Þ, of N nodes, and
A¼ fðii; j1Þ;…; ðim; jmÞgDN � N arcs, where q positive costs
c!ij ¼ ðc1ij;…; cqijÞARqþ are associated with each arc ði; jÞAA. Some-
times we will denote c!ij as c!ði; jÞ.

Let a path from node n1 to node nk be a sequence of nodes
ðn1;n2;…nkÞ such that 8 iok ðni;niþ1ÞAA. Let the cost vector of a
path be defined as the sum of the cost vectors of its component arcs.

Definition 1 (Adapted from [31]). The multiobjective shortest path
problem consist in finding the set of all non-dominated cost paths in G,
with source node sAN and target node γAN. It can be formulated
mathematically as the following network flow problem,

min z!ð x!Þ¼

z1ð x!Þ¼ P
ði;jÞAA

c1ijxij;

…
zqð x!Þ¼ P

ði;jÞAA
cqijxij;

8>>><
>>>:

ð1Þ

s:t:
X

ði;jÞAA

xij�
X

ðj;iÞAA

xji ¼
1 if i¼ s;

0 if ias; γ;
�1 if i¼ γ;

8><
>: ð2Þ

xijAf0;1g for all ði; jÞAA: ð3Þ

where x! is a vector of flows on the arcs, and the constraints (2)
represent flow balance at the different nodes.

Definition 2. In multiobjective problems, cost vectors induce a
partial order preference relation !called dominance,

8 y!; y!ARq y!! y!0
3 8 i yiry0i4 y!a y0

! ð4Þ

Analogously, we define the preference relation ⪯called dominance
or equality,

8 y!; y0
!

ARq y!⪯y0
!

3 y!! y0
!

4 y!¼ y0
! ð5Þ

where yi denotes the ith element of vector y!. For any two vectors,
it is not always possible to rank one as better than the other
according to dominance, e.g. none of (20,30), (30,20) dominates
each other, but both are dominated by (10,10).

Definition 3. Given a set of vectors X, we define nd(X), the set of
non-dominated vectors in X as

ndðXÞ ¼ f x!AXj∄ y!AX; y!! x!g ð6Þ

Definition 4. We define the lexicographic order ! L as follows:

8 y!; y!0
ARq y!!L y

!0
3 ( jyjoy0j4 8 io jyi ¼ y0i: ð7Þ

and the preference relation ⪯L ,

8 y!; y!0
ARq y!⪯L y

!0
3 y!!L y

!04 y!¼ y!0 ð8Þ

Definition 5. We also define the linear aggregate order ! lin as
follows:

8 y!; y0
!

ARq y!! lin y
0!3

X
i

yio
X
i

y0i;1r irq ð9Þ

where yi denotes the ith component of vector y!.

The lexicographic and linear aggregate orders are strict total
orders. The lexicographic and linear aggregate optima of a set of
vectors are trivially non-dominated vectors.

A basic pseudocode for algorithm NAMOAn is shown in Table 1.
More details about this algorithm can be found elsewhere [26].
NAMOAn is a best-first algorithm that builds a search graph SG,
rooted at the start node s, to store all non-dominated paths found
to each node. Each node in the search graph has two sets of labels:
Gop(n) denotes the set of cost vectors of paths reaching n that can
be further explored; Gcl(n) denotes the set of cost vectors that have
already been expanded, and we refer to them as closed or
permanent. The algorithm uses a distance estimate function H(n)
that returns a set of the cost estimates of the cost of all non-
dominated paths from node n to the goal. When the cost estimates
lower bound real costs, NAMOAn is an exact algorithm. In this
work we are concerned with the case where each node has a single
lower bound, which we denote as h

!ðnÞ. Let g!ðPsnÞ be the cost of
some path Psn reaching some node n from the start node. Then,
f
!ðPsnÞ ¼ g!ðPsnÞþ h

!ðnÞ is an estimate of the cost of an extension of
such path to the goal node.

For each unexplored label ðn; gÞ;nAN; g!AGopðnÞ, an extended
label ðn; g!; f

!Þ is calculated such that f
!¼ g!þ h

!ðnÞ. All such
extended labels are kept in an OPEN set. At each iteration, an
extended label with a non-dominated f

!
in OPEN is selected for

expansion. By abuse of language, we will sometimes refer to
extended labels simply as labels. If n is the goal node, then f

!
is

stored in COSTS, the set of non-dominated solutions costs. Other-
wise, the non-dominated label ðn; g!; f

!Þ selected from OPEN is
made permanent, i.e., g is moved from Gop(n) to Gcl(n). For each arc
ðn;n0Þ in the graph with cost c!ðn;n0Þ, a new label is generated for
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