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a b s t r a c t

The Minimum Spanning Tree Problem (MSTP) is one of the most known combinatorial optimization
problems. It concerns the determination of a minimum edge-cost subgraph spanning all the vertices of a
given connected graph. The Quadratic Minimum Spanning Tree Problem (QMSTP) is a variant of the
MSTP whose cost considers also the interaction between every pair of edges of the tree. In this paper we
review different strategies found in the literature to compute a lower bound for the QMSTP and develop
new bounds based on a reformulation scheme and some new mixed 0–1 linear formulations that result
from a reformulation–linearization technique (RLT). The new bounds take advantage of an efficient way
to retrieve dual information from the MSTP reduced cost computation. We compare the new bounds
with the other bounding procedures in terms of both overall strength and computational effort.
Computational experiments indicate that the dual-ascent procedure applied to the new RLT formulation
provides the best bounds at the price of increased computational effort, while the bound obtained using
the reformulation scheme seems to reasonably tradeoff between the bound tightness and computational
effort.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Given an undirected graph G¼ ðV ; EÞ, with V ¼ fv1; v2;…; vng
and E¼ fe1; e2;…; emg, a matrix of quadratic costs C with
Cef Z0; 8e; f AE, and linear costs deZ0; 8eAE, the quadratic
minimum spanning tree problem (QMSTP) consists of finding a
spanning tree TDG with minimum overall cost

P
e;f ATCef

þP
eATde.

The QMSTP has been used to model many applications arising
in transportation, telecommunication, and energy networks,
where linear costs account for the use or construction of edges
while the quadratic costs represent the interference between the
edges [1,2]. When the interference refers only to pairs of adjacent
edges the problem is named adjacent QMSTP (AQMSTP). Both the
general QMSTP and the AQMSTP are NP-hard as proved in [1].

Many exact and heuristic algorithms have been proposed for
solving both the QMSTP and the AQMSTP. Assad and Xu in [1]
proposed a lower bounding procedure and two heuristic
approaches. They also described the branch-and-bound algorithm
based on a linearized formulation. Öncan and Punnen [3]

introduced a Lagrangian relaxation procedure to obtain an
improved lower bound and an efficient local search algorithm.
Cordone and Passeri [4] have developed two heuristics and an
exact approach. Lee and Leung [5] studied the Boolean quadric
forest polytope and proposed several facet defining inequalities.
Buchheim and Klein [6] proposed complete polyhedral descrip-
tions of the QMSTP with one quadratic term and provide an
improved version of the standard linearization by means of cutting
planes. Pereira et al. [7] proposed some new formulations using a
particular partitioning of the spanning trees, and provided a new
mixed binary formulation for the problem by applying the first
level of the reformulation-linearization technique (RLT). The most
effective heuristic approaches for the QMSTP can be found in
[2,8–10].

Lower bounds constitute a fundamental component of branch-
and-bound algorithms, and are a basic tool for the evaluation of
the quality of heuristic solutions. There are several branch-and
bounds for the QMSTP in the literature [1,4,7]. In practice, the lack
of efficiently computable tight lower bounds can be one of the
main causes of the difficulty of solving even small size instances.
The first lower bounding procedure for the QMSTP, proposed by
Assad and Xu in [1] iteratively applies an adaptation of the
Gilmore–Lawler procedure, originally proposed for the Quadratic
Assignment Problem [11,12], to a sequence of equivalent QMSTPs.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.06.005
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ49 231 7557226; fax: þ49 231 7557215.
E-mail address: brostami@mathematik.tu-dortmund.de (B. Rostami).

Computers & Operations Research 64 (2015) 178–188

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.06.005
http://dx.doi.org/10.1016/j.cor.2015.06.005
http://dx.doi.org/10.1016/j.cor.2015.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.06.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.06.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.06.005&domain=pdf
mailto:brostami@mathematik.tu-dortmund.de
http://dx.doi.org/10.1016/j.cor.2015.06.005
http://dx.doi.org/10.1016/j.cor.2015.06.005


Öncan and Punnen in [3] introduced an extended formulation
based on the addition of two sets of valid inequalities to the
linearized formulation of [1]. Their lower bounding approach
applies a Lagrangian relaxation where the Gilmore–Lawler proce-
dure is used to solve the resulting Lagrangian subproblem. Pereira
et al. [7] proposed a new mixed binary formulation for the
problem and developed a Lagrangian relaxation approach to
obtain a linear programming based lower bound.

The main contribution of this paper consists of obtaining lower
bounds for the QMSTP using dual information retrieved from the
MSTP reduced costs. In order to find a common framework for
description of the individual bounds we review and analyze
different bounding procedures proposed in the literature and
compare them in terms of continuous relaxation of a Mixed
Integer Linear Programming problem (MILP). We describe new
bounds for the problem by considering a reformulation of the
problem based on dual information retrieved from the continuous
relaxation of the MILP. The basic idea is to solve the continuous
relaxation of the given MILP, and use the reduced costs as the
objective coefficients of the reformulated problem. Moreover, for
generating tighter bounds, we develop a mixed 0–1 linear for-
mulation based on the second level of the RLT and show how to
handle it via a Lagrangian relaxation where the Lagrangian
function has block-diagonal structure. Since the dualized con-
straints are, indeed, many more than those of the level-1 RLT [7],
finding the near-optimal dual multipliers using classical subgra-
dient methods is not viable. Therefore, using the dual information
retrieved from the MSTP reduced cost, we devise an efficient dual-
ascent procedure to solve the continuous relaxation of the level-
2 RLT.

The paper is organized as follows: In Section 2 we review
existing lower bounds for QMSTP. In Section 3 we develop a
bounding procedure based on a new reformulation scheme. In
Section 4 we provide a brief discussion on the level-1 RLT, develop
the level-2 RLT representation of QMSTP, and describe our dual-
ascent implementation of the level-2 RLT lower bound calculation.
In Section 5 we present computational experiments conducted on
different benchmarks from the literature and compare the tight-
ness and the required computational time of the new bounding
techniques with those of the literature.

2. Problem formulation and lower bounds review

In order to present the mathematical formulation of the
QMSTP, let us first introduce some notation used in the sequel.
We denote by E(S) the set of all edges with both endpoints in S for
any S� V , and δðiÞ as the set of all edges incident in node i. We
define the binary variable xe to indicate the presence of edge eAE
in the optimal spanning tree. The QMSTP has the following integer
formulation:

QMSTP : min
X
e;f AE

Cef xexf þ
X
eAE

dexe

s:t:
X
eAE

xe ¼ n�1 ð1Þ

X
eAEðSÞ

xer jSj �1 8∅aS� V ð2Þ

xeZ0; x binary 8eAE: ð3Þ
where the objective function considers the linear cost of the
selected edges and also the interaction costs between pairs of
edges. Constraints (2) are the subtour elimination constraints and
ensure that no subgraph induced by the nonempty subset S� V
contains a cycle. These subtour elimination constraints together
with the cardinality constraint (1) guarantee the connectivity of

the induced subgraph. Constraints (1)–(3) define the set of span-
ning trees in G and thereafter is denoted by X , i.e.,

X ¼ fxZ0 : ð1Þ; ð2Þg:

2.1. Gilmore–Lawler type bound

The Gilmore–Lawler procedure, shortly denoted by GL, is one of
the most popular approaches to find a lower bound for the
Quadratic Assignment Problem (QAP). The GL procedure was
proposed by Gilmore [11] and Lawler [12] in the context of QAP
and has been adapted to many other quadratic 0–1 problems
[13,14].

For each edge e, potentially in the solution, we consider the
best cumulation cost providing the minimum interaction cost with
e. Let Pe be such a subproblem for a given edge eAE

Pe : ze ¼min
X
f AE

Cef xf : xAX ; xe ¼ 1

8<:
9=; 8eAE: ð4Þ

The value ze is the best quadratic contribution to the QMSTP
objective function where edge e is in the solution. Once ze has been
computed for each eAE, the GL type bound is given by the solution
of the following MSTP:

LBGL ¼min
X
eAE

ðzeþdeÞxe : xAX
( )

: ð5Þ

Although the GL bound that we just described is a pure
combinatorial bound of the QMSTP, it can also be obtained as
the result of a linear programming problem. More precisely,
consider the following MILP formulation where the decision
variables yef equal to 1 if and only if both edges e and f are present
in the solution of the problem

P : min
X
e;f AE

Cef yef þ
X
eAE

dexe

s:t:
X
f AE

yef ¼ ðn�1Þxe 8eAE ð6Þ

X
f AEðSÞ

yef r ðjSj �1Þxe 8∅aS� V ; eAE ð7Þ

yee ¼ xe 8eAE ð8Þ

yef Z0 8e; f AE

xAX ; x binary: ð9Þ
Constraints (6) guarantee that whenever an edge eAE is selected,
the total number of selected edges interacting with e must be
equal to ðn�1Þ, including e itself. Overall, constraints (6)–(9)
enforce vector ye ¼ ðye1e;…; yemeÞ to be a spanning tree containing
edge e in case xe¼1 ,or to be the null vector, in case xe¼0.

Consider the continuous relaxation of problem P (CP). The
problem CP is computationally interesting since its optimal objec-
tive value gives the GL bound as stated in the following theorem.

Theorem 1. The optimal objective value of CP is equal to LBGL.

Proof. Let λ, μS, αe, γSe, and πe denote the dual variables
corresponding to constraints (1), (2), and (6)–(8), respectively.
The dual of CP is

DCP : max �λðn�1Þ�
X
S � V

μSðjSj �1Þ ð10Þ

s:t: �λ�
X
S � V :
eA EðSÞ

μSþðn�1Þαeþ
X
S � V

ðjSj �1ÞγSeþπerde 8eAE

ð11Þ
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