
Improving schedule stability in single-machine rescheduling for new
operation insertion

Can Akkan n

Sabancı School of Management, Sabancı University, Orhanlı, Tuzla, Istanbul 34956, Turkey

a r t i c l e i n f o

Available online 12 June 2015

Keywords:
Production scheduling
Single machine
Deterministic
Heuristics
Stability
Robustness

a b s t r a c t

The problem studied here entails inserting a new operation into an existing predictive schedule
(preschedule) on a (non-preemptive) single machine by rescheduling its operations, so that the resultant
schedule is the most stable one among schedules with minimal maximum tardiness. Stability is
measured by the sum of absolute deviations of post-rescheduling start times from the pre-rescheduling
start times. In addition to several simple heuristics, this study investigates a hybrid branch-and-bound/
local-search algorithm. A large set of instances that include cases with inserted idle times allows for tests
of the performance of the heuristics for preschedules with varying degrees of robustness. The results
show that algorithms can be developed that significantly improve the stability of schedules with no
degradation in Tmax. In addition, new insights emerge into the robustness characteristics of a
preschedule. Specifically, the number of gaps in the schedule, equal distribution of total slack among
these gaps, and the slack introduced beyond the amount enforced by release times all have effects on
schedule robustness and stability.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This research addresses a scheduling problem in which a new
operation is inserted into an existing predictive schedule (pre-
schedule) for a single machine. We assume this is a finite-capacity
schedule that has been prepared for planning, capacity reserva-
tion, and due time commitment purposes. Therefore, maintaining
its stability, while making room for a new operation, is an
important concern. To address this concern, the preschedule
contains inserted idle times, or “gaps”, between scheduled
operations.

All operations have release time rj, due time dj and processing
time pj. The start times of operations in the preschedule are
denoted by sj

o for j¼ 1;…; ðn�1Þ, and the start times after
rescheduling are denoted by Sj for all j. Rescheduling is not allowed
to violate the release time constraint of an operation; violations of
release times are likely to be costly or even infeasible, because
they depend on the arrival of parts from suppliers or other
machines. We assume that the machine is operational continu-
ously, all processes are deterministic, and operations cannot be
preempted.

We define the problem as a hierarchical or lexicographical optimi-
zation problem (e.g., see [1]). The primary objective is the minimiza-
tion of maximum tardiness (Tmax) for all operations, including the new
one. The secondary objective is maximizing schedule stability. Sche-
dule stability is measured by D ¼ Pðn�1Þ

j ¼ 1 soj �Sj
���

���=ðn�1Þ, and we
attempt to find the schedule with minimum D among all schedules
that minimize Tmax.

This problem is not only interesting theoretically but also
relevant practically. According to recent survey research presented
in De Snoo et al. [2] focused on manufacturing firms, the three
most frequently cited performance criteria for a production
schedule (and associated information produced by that process)
are the (i) fulfillment of constraints made to external parties, (ii)
fulfillment of resource utilization constraints, and (iii) schedule
robustness and information completeness, in that order. Yet in the
process of developing manufacturing schedules, the two most
important criteria are communication quality and the flexibility of
schedule adaptation. The scheduling problem defined here
addresses most of these criteria: rescheduling supports the need
for flexibility; the objective of accepting a new order while
keeping the maximum tardiness and the deviation from a pre-
schedule small not only supports the fulfillment of promises
(constraints) made to suppliers and the rest of the supply chain
but also helps increase utilization, by accepting new orders that do
not at first fit into the existing schedule. As De Snoo et al. [2]

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.05.015
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

n Tel.: þ90 216 4839685; fax: þ90 216 4839699.
E-mail address: canakkan@sabanciuniv.edu

Computers & Operations Research 64 (2015) 198–209

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.05.015
http://dx.doi.org/10.1016/j.cor.2015.05.015
http://dx.doi.org/10.1016/j.cor.2015.05.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.05.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.05.015&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.05.015&domain=pdf
mailto:canakkan@sabanciuniv.edu
http://dx.doi.org/10.1016/j.cor.2015.05.015
http://dx.doi.org/10.1016/j.cor.2015.05.015


acknowledge “schedulers indicate that responsiveness in [requests
for rush orders] is highly important”.

Recently, rescheduling and the more general topic of schedul-
ing under uncertainty has attracted the interest of many research-
ers, as reviewed by Mehta and Uzsoy [3], Davenport and Beck [4],
Vieira et al. [5], Herroelen and Leus [6] (who include project
scheduling as well), Aytug et al. [7], Ouelhadj and Petrovic [8] and
Sabuncuoglu and Goren [9]. These reviews highlight two main
research themes: developing robust schedules that are less sensi-
tive to disruptions and rescheduling operations by reacting to
disruptions. Robustness is measured with respect to either the
performance criterion of schedules (e.g., makespan, tardiness) or
with respect to some characteristic(s) of the schedule itself (e.g.,
sequence of operations, start times of operations, assignments of
operations to machines). The latter is often referred to as schedule
stability, which is important because a schedule often forms the
basis for planning for other activities in the production system
(e.g., material delivery, tool and resource allocation), and even
small changes in the schedule could ripple through the production
system, creating “nervousness” [7]. We refer to the first type of
robustness as simply robustness and the second as stability.

Several authors study the use of slack to improve the robust-
ness of schedules. Despite a general consensus (e.g., [10–13]) about
the need to introduce slack into a schedule to improve robustness,
more work is necessary to develop methods to determine the
amount of slack and its distribution within the schedule. This need
is highlighted by the computational experiments conducted in this
research as well.

The most commonly used measure of schedule stability, at least
within the context of single machine scheduling, is the sum of
absolute differences between preschedule start times and post-
disruption (or post-rescheduling) start times, D. To the best of our
knowledge, the first article to use this measure was Wu et al. [14],
followed by O’Donovan et al. [15], Mehta and Uzsoy [11], and Hall
and Potts [16], among others. Another set of stability measures
quantify the extent of change in the sequence. For example, Wu
et al. [14] use start times for this purpose, whereas Watatani and
Fujii [17] and Hall and Potts [16] use distance metrics between two
sequences. In other contexts, such as parallel machines or batch
processes, other measures of schedule stability might be justified.

The approach of maintaining a predictive schedule and reacting
to disruptions (e.g., new job arrival, machine failure) is known as
predictive–reactive scheduling (e.g., [18,19]). According to Aytug
et al. [7], the purposes of a predictive schedule (preschedule)
include the following: serving as a capacity check; providing
visibility for the rest of the organization, external suppliers, and
customers; evaluating the performance of the shop-floor person-
nel; and avoiding any further problems by serving as a feed-
forward control tool.

An important distinction among predictive–reactive scheduling
problems, which relates closely to the type of disruption, is
whether the rescheduling is done on the schedule that currently
is being executed on the shop floor or one that exists for planning
purposes some time into the future (e.g., next day, week, or even
month). This distinction has implications for the required running
time of the rescheduling algorithms and the degrees of freedom in
the schedule change. Plan stability (especially near-term) is as
important as the stability of the execution in the shop floor due to
the supply chain's interdependencies and constraints.

In summary, the rescheduling problem addressed in this paper
follows a predictive–reactive scheduling strategy, with event-
driven rescheduling in the planning (rather than execution) phase
of the schedule, due to the arrival of a new job that serves as the
triggering event (disruption). In practice, this problem occurs in
finite-capacity scheduling used to provide capable-to-promise
(CTP) functionality (e.g., [20]).

In terms of the main issue being addressed and the way we
model stability, the previous work most related to our efforts is
Wu et al. [14]. However, they use makespan as the main efficiency
criterion, and the disruption they model is machine failure. Hall
and Potts [16] and Hall et al. [21] are also closely related to the
problem we define here, though in terms of the way the issue is
modeled, there are significant differences. Hall and Potts [16]
develop two classes of models: (i) the cost of disruption is
included as a constraint in the model, and (ii) a total cost function
is taken as the objective function, which includes the cost function
(e.g., the maximum lateness, or the sum of the completion times)
and the disruption cost. The disruption cost is modeled in two
different ways, namely, as the sum of absolute deviations in the
start times (as done here) or the number of position changes in the
sequence. For several single-machine problem classes (none with
the release times), they provide either an efficient solution algo-
rithm or an intractability result. Hall et al. [21] model the
rescheduling of a single machine due to a set of new orders as a
problem of minimizing the maximum lateness of all jobs, subject
to a limit on the maximum time change of the prescheduled jobs
(jobs are all available at time zero; preschedule is not necessarily
optimal and may include idle time).

With this study we make two main contributions. First, we
provide evidence to support previous conclusions about stability
in scheduling, in that we show that algorithms can be developed
that significantly improve the stability of schedules with no
degradation in an efficiency-based schedule objective. Second,
we develop further insights into the robustness characteristics of
a preschedule, beyond a general conclusion in prior literature that
adding a slack to a schedule improves robustness. Specifically, the
number of gaps in the schedule, the distribution of total slack
among these gaps (measured by the Gini coefficient), and the slack
introduced beyond the requirement enforced by the release times
have been analyzed as factors with potential effects on schedule
robustness and stability.

Section 2 offers a more detailed, formal definition of the
problem. After discussing the solution approaches in Section 3,
we provide a detailed description of how we generated instances
in Section 4, followed by discussion of the computational results in
Section 5 and concluding remarks in Section 6.

2. Problem description

As we discussed in Section 1, we assume that there is a
schedule created for planning purposes on a single machine, and
there are currently n�1 operations in this schedule. This pre-
dictive schedule is referred to as the preschedule, and the opera-
tions are indexed j¼ 1…ðn�1Þ. Each operation j in the
preschedule has a release time rj, a start time soj , a processing
time pj, and a due time dj. The preschedule is feasible and without
any tardiness (rjrsoj and soj þpjrdj for j¼ 1;…;n�1).

Given this preschedule, a request for scheduling a new opera-
tion arrives. This new operation is indexed by n, and its release
time, due time, and processing time are denoted by rn, dn, and pn,
respectively. Operation n cannot be inserted into the preschedule
between rn and dn without rescheduling at least one of the
operations in the preschedule. Sj denotes the start time of opera-
tion j after the insertion of the new operation, so that rjrSj for
j¼ 1;…;n. In creating this new schedule, there are two objectives:
the primary objective is minimizing the maximum tardiness, and
the secondary objective is maximizing the schedule stability, as
defined below. The tardiness of operation j is denoted by
Tj ¼maxð0; Sjþpj�djÞ and Tmax ¼maxj ¼ 1…nTj. Schedule stability
is measured by D ¼ Pn�1

j ¼ 1 s0j �Sj
���

���=ðn�1Þ. Letting Tn

max denote the
minimum Tmax, the overall objective is to find the schedule that

C. Akkan / Computers & Operations Research 64 (2015) 198–209 199



Download English Version:

https://daneshyari.com/en/article/474615

Download Persian Version:

https://daneshyari.com/article/474615

Daneshyari.com

https://daneshyari.com/en/article/474615
https://daneshyari.com/article/474615
https://daneshyari.com

