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a b s t r a c t

We analyse a polyhedron which contains the convex hull of all Hamiltonian cycles of a given undirected
connected cubic graph. Our constructed polyhedron is defined by polynomially-many linear constraints
in polynomially-many continuous (relaxed) variables. Clearly, the emptiness of the constructed
polyhedron implies that the graph is non-Hamiltonian. However, whenever a constructed polyhedron
is non-empty, the result is inconclusive. Hence, the following natural question arises: if we assume that a
non-empty polyhedron implies Hamiltonicity, how frequently is this diagnosis incorrect? We prove that,
in the case of bridge graphs, the constructed polyhedron is always empty. We also demonstrate that
some non-bridge non-Hamiltonian cubic graphs induce empty polyhedra as well. We compare our
approach to the famous Dantzig–Fulkerson–Johnson relaxation of a TSP, and give empirical evidence
which suggests that the latter is infeasible if and only if our constructed polyhedron is also empty. By
considering special edge cut sets which are present in most cubic graphs, we describe a heuristic
approach, built on our constructed polyhedron, for which incorrect diagnoses of non-Hamiltonian
graphs as Hamiltonian appear to be very rare. In particular, for cubic graphs containing up to 18 vertices,
only four out of 45,982 undirected connected cubic graphs were so misdiagnosed. By constrast, we
demonstrate that an equivalent heuristic, when built on the Dantzig–Fulkerson–Johnson relaxation of a
TSP, is mostly unsuccessful in identifying additional non-Hamiltonian graphs. These empirical results
suggest that polynomial algorithms based on our constructed polyhedron may be able to correctly
identify Hamiltonicity of a cubic graph in all but rare cases.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Hamiltonian cycle problem (HCP) is a well-known problem
that features prominently in complexity theory because it is NP-
complete [13]. The HCP can be stated simply: given a graph Γ
containing N vertices, determine whether Γ contains a simple
cycle of length N, or not. Such a cycle is called a Hamiltonian cycle.
Graphs containing at least one Hamiltonian cycle are called
Hamiltonian graphs, and those containing no Hamiltonian cycles
are called non-Hamiltonian graphs. There are many specialised
heuristics which attempt to solve HCP, which include rotational
transformation algorithms, cycle extension algorithms, long path
algorithms, low degree vertices algorithms, multipath search and
pruning algorithms. Attempts to solve HCP have also been made
by operations research or optimisation communities, such as
nonlinear optimisation (e.g. see Filar et al. [10]) and importance
sampling (e.g. see Eshragh et al. [9]). The HCP is also closely related

to the famous Travelling Salesman Problem (TSP), which is simply
the problem of finding the Hamiltonian cycle of optimal length. In
the language of the TSP, Hamiltonian cycles are usually called
tours.

A cubic graph is the one in which every vertex has degree three.
The HCP is known to be NP-complete even if only undirected cubic
graphs are considered. By assuming cubicity, there is much
inherent graph structure that can be taken advantage of by
algorithms (e.g. see Eppstein [7]). Indeed, there is still a lot of
interest in special properties of not only all cubic graphs, but even
special classes of cubic graphs (e.g. see Horev et al. [17]).

More generally, in literature, there have been many approaches
towards developing polyhedral sets whose extreme points corre-
spond to solutions of interest. In the case of both TSP and HCP,
such a polyhedron is the convex hull of points that are in 1-to-1
correspondence to Hamiltonian cycles (or tours). Let us denote
such a polyhedron by Q : ¼ Q ðΓÞ for a given graph Γ. Of course,
Q ¼∅ when Γ is non-Hamiltonian. In the TSP literature, some of
the most successful theories and algorithms have been based on
characterisations of facets of Q (e.g. see Grötschel and Padberg
[14]). In the context of HCP, however, explicit identification of a
Hamiltonian cycle is not necessary. Indeed, Hamiltonicity is
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equivalent to the determination that Qa∅. This paper is moti-
vated by the obvious observation that, if a set P*Q is empty, then
certainly Q is empty as well. Of course, the challenge is to
construct a polytope P that is so close to Q to increase the chances
of successful detection of non-Hamiltonicity. In this paper, we
construct such a set P – determined by a polynomially bounded
number of linear constraints in continuous (relaxed) variables –

that appears to possess the preceding inclusion property for a vast
majority of non-Hamiltonian cubic graphs.

The approaches given in this paper differ from the more
traditional approach of identifying facet-inducing cuts in that we
attempt to determine non-Hamiltonicity by forcing P to become
empty, rather than by seeking to eliminate subtours in an iterative
fashion. Although the final approach given in this paper is an
iterative procedure, none of the iterates are based upon the result
of a previous iteration. Rather, for a given graph, we will outline a
series of tests that can be identified in advance, and the failure of
any of those tests guarantees non-Hamiltonicity.

Cubic graphs represent a natural test laboratory for this
methodology, not only because HCP is still NP-complete, but also
because of the availability of reliable public-domain generators (e.
g. see Meringer [19]) that are capable of efficiently enumerating all
nonequivalent connected cubic graphs of a given size. Our con-
struction of the polyhedron P is achieved in two stages. First, we
propose a base model, containing constraints which are generic for
all graphs. Secondly, we add in additional constraints in an
iterative fashion whenever certain structures are present in the
graph. Importantly, however, these structures can be identified by
preprocessing requiring only polynomial-time algorithms.

Specifically, the structures that we search for are those that
identify brittle points in the graph. Recently, in Baniasadi et al. [3],
it was demonstrated that the set of all connected cubic graphs can
be separated into two disjoint subsets, namely genes and descen-
dants. The key distinction between these two subsets is the
presence (or absence) of special edge cut sets known as cubic
crackers. The following two definitions are paraphrased from
Baniasadi et al. [3].

Definition 1.1. In a cubic graph, a k-cracker ck is an edge cut set of
cardinality k containing no adjacent edges, such that no proper
subset of ck is also an edge cut set. A cubic cracker is a cracker with
cardinality no greater than 3.

Definition 1.2. A gene is a connected cubic graph that contains no
cubic crackers, and a descendant is a connected cubic graph that
contains at least one cubic cracker.

In Baniasadi et al. [3], crackers were used to develop a decom-
position theory for cubic graphs that exploits genes and crackers.
That theory does not include any algorithmic results for identifying
non-Hamiltonicity. However, the results of this paper provide
strong empirical evidence that cubic crackers contain much infor-
mation about the Hamiltonicity of a graph. Specifically, considera-
tion of the cubic crackers can very often be used to detect non-
Hamiltonicity, if it is present. The method presented in this paper
either finds that a cubic graph is definitely non-Hamiltonian, or
returns an inconclusive result. Since the majority of connected cubic
graphs are Hamiltonian [20], the latter outcome is obviously the
most common, and by itself does not provide certainty that the
graph is Hamiltonian. However, we will demonstrate that the
number of false positives (that is, the number of non-Hamiltonian
graphs returning an inconclusive result) is extremely low whenever
our iterative procedure is used. Since determining whether a
polyhedron, defined by polynomially-many linear constraints in
polynomially-many continuous variables is empty, can be done by
linear programming, this is a problem of polynomial complexity.
Hence, the results presented in this paper serve to suggest that

polynomial algorithms may be able to correctly identify non-
Hamiltonicity of cubic graphs in the vast majority of cases.

Since non-Hamiltonian genes, by definition, do not contain any
cubic crackers, the constraints based on the latter cannot be
expected to be successful for these graphs. Indeed, they return
an inconclusive result in all cases tested to date. Such non-
Hamiltonian genes are called mutants. It was conjectured in [3]
that mutants are extremely rare – indeed, only three such graphs
containing 18 or fewer vertices exist. Despite their rarity, their
identification may still be considered important; one justification
could be that the set of mutants is a superset to the more famous
set of (nontrivial) Snarks [12]. For this reason an additional
heuristic is suggested at the end of this paper that succeeds in
correctly identifying two of the three aforementioned graphs as
non-Hamiltonian.

A famous related approach is the, now classical, Dantzig–
Fulkerson–Johnson relaxation of the TSP with subtour constraints
(e.g., see Dantzig et al. [6] and Cook et al. [5]), which we will
henceforth refer to as the DFJ relaxation. The constraints of that
model, defined in terms of a given graph, also induce a polyhedron
Pc*Q. Then, if the polyhedron Pc is empty, the graph is definitely
non-Hamiltonian. Although there are exponentially many subtour
constraints, it is possible to determine whether the polyhedron is
empty in polynomial time using cutting plane techniques. We will
compare the performance of the DFJ relaxation with the method
proposed in this paper, in terms of the proportion of non-
Hamiltonian graphs identified.

Three previous attempts to construct a desirable polyhedron
P*Q were included in the recent Ph.D. theses of Haythorpe [15]
and Eshragh [8], and in Avrachenkov et al. [1]. In Haythorpe [15],
two of these polyhedra P in variables corresponding to arcs were
constructed, it was conjectured (based on empirical evidence) that
both polyhedra are empty for any cubic bridge graph. Bridge
graphs are always non-Hamiltonian, and it was conjectured in
[11] that, asymptotically, almost all non-Hamiltonian graphs are
bridge graphs. However, no other non-Hamiltonian graphs were
detected using either of the polyhedra in Haythorpe [15].

In Eshragh [8], and later in Avrachenkov et al. [1], a related but
somewhat different polyhedron was constructed. New variables
corresponding not only to arcs in a graph, but also to positional
information, were introduced. These variables have a probabilistic
interpretation – a variable xkr;ia can be thought of as the probability
that arc (i, a) is selected at the r-th step in a Hamiltonian cycle
beginning at vertex k. By convention, if vertex a is the first vertex
visited in the Hamiltonian cycle after vertex k, then arc (k, a) is said
to be the 0-th step of that Hamiltonian cycle. Clearly, in a solution
corresponding to a Hamiltonian cycle, the variables must either
take values 0 or 1. However, to retain linearity, this binary
requirement was relaxed to allow xkr;ia to simply take continuous
values in ½0;1�. The polyhedron given in these variables was again
demonstrated empirically to be empty for any cubic bridge graph.
In addition, a small number of non-bridge non-Hamiltonian
graphs also generated empty polyhedra. These results motivated
the further analysis and development of this approach, detailed in
this paper.

This paper is structured as follows. In Section 2 we prove that
our constructed polyhedron is empty whenever induced by a cubic
bridge graph. We also demonstrate empirically that this polyhe-
dron constitutes an LP relaxation that is at least as strong as the
DFJ relaxation when induced by cubic graphs. In Section 3 we
introduce additional constraints based on cubic crackers that
permit us to correctly identify the Hamiltonicity of nearly all
tested cubic graphs (over 40,000). By contrast, when an equivalent
approach based on the DFJ relaxation was applied, very little
improvement over their standard model was detected. It thus
appears that the variables xkr;ia can be used to capture valuable
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