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a b s t r a c t

Many efficient exact branch and bound maximum clique solvers use approximate coloring to compute an
upper bound on the clique number for every subproblem. This technique reasonably promises tight
bounds on average, but never tighter than the chromatic number of the graph.

Li and Quan, 2010, AAAI Conference, p. 128–133 describe a way to compute even tighter bounds by
reducing each colored subproblem to maximum satisfiability problem (MaxSAT). Moreover they show
empirically that the new bounds obtained may be lower than the chromatic number.

Based on this idea this paper shows an efficient way to compute related “infra-chromatic” upper
bounds without an explicit MaxSAT encoding. The reported results show some of the best times for a
stand-alone computer over a number of instances from standard benchmarks.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For a given graph, a complete subgraph, alias clique, is a graph
which vertices are all pairwise adjacent. Finding a hidden clique with
the maximum number of vertices is a deeply studied NP-hard
problem known as the maximum clique problem (MCP). MCP has
found many applications in a wide scope of fields [1]. Correspondence
related problems appear in computational biology, [2], robotics [3–4],
computer vision [5]. Finding cohesive clusters in networks is another
typical application. Its use in mining correlated stocks is also worth
noting.

Exhaustive clique enumeration behind exact MCP can be traced
back to the Bron and Kerbosch algorithm [6]. A basic branch and
bound (BnB) algorithm which computes primitive bounds for every
subproblemwas described in [7]. Since then, researchers have tried to
devise ways of establishing tighter bounds. Fahle [8] and Régin [9] use
a constraint-based approach to prune the search space, but the
majority of current efficient solvers are color-based, i.e. they employ
a greedy coloring heuristic to compute an upper bound for the clique
number of every subproblem, as in [10–19]. Interesting recent com-
parison surveys for exact maximum clique algorithms have been
reported by Prosser [20] and Wu and Hao's [24]. They show MCS [15],
MaxCLQ [18], and bit optimized BBMC [12–13] as the current fastest
algorithms at present.

The theoretical foundation for approximate color-based algo-
rithms can be found in the following proposition [21]: the chro-
matic number of every graph G is an upper bound on its clique
number

χðGÞZωðGÞ ð1Þ

It is worth noting that, although color-based bounds are reasonably
tight on average, Mycielski showed how to build graphs in which
χðGÞ�ωðGÞZn; 8nAℕ [22]. This constitutes a drawback for the
color-based approach.

Li and Quan in [17,18] show empirically that it is possible to
compute better approximations to the clique number than the
chromatic number by encoding a colored graph to MaxSAT and
apply typical logical inferences.

This paper describes a new efficient upper bound related to the
previous bound but reasoning with color set information. The pro-
cedure is applicable to a more constrained set of cases than [17,18] but
is also faster to compute since it does not require excessive MaxSAT
inferences.

1.1. Preliminaries

A simple undirected graph G¼ ðV ; EÞ consists of a finite set of
vertices V ¼ v1; v2;⋯; vnf g and edges EDV � V that pair distinct
vertices. Two vertices are said to be adjacent (neighbors) if they are
connected by an edge. For any vertex vAV , NGðvÞ (or simply NðvÞ
when the graph is clear from the context) refers to the neighbor set of
v in G. Any subset of vertices UDV induces a new subgraph
G¼ ðU; E'Þ ¼ G½U� with vertex set U and edge set E'DE such that
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both endpoints of any edge in E' are in U. GvDG denotes the graph
induced by the neighbor set of vertex v in G.

Some definitions used in this paper are:

� maximal clique: a clique that cannot be enlarged by any other
vertex in the graph;

� maximum clique: a clique which has maximum order (number
of vertices);

� independent set: a subset of a graph G, which elements are
pairwise non-adjacent;

� vertex coloring: an assignment of colors cðvÞ : V-ℕ to every
vertex of a graph so that any two adjacent vertices have
different colors;

� chromatic number χðGÞ: the minimum number of colors in
which it is possible to color graph G. Finding the chromatic
number of a graph is an NP-hard problem;

� clique number ωðGÞ: the number of vertices of a maximum
clique in G;

� sequential vertex coloring: an approximate coloring procedure
that iteratively colors vertices in some predefined order;

� greedy vertex coloring (SEQ): a sequential vertex coloring in
which every vertex is assigned the smallest possible color.

Additional standard notation in the paper is degðvÞfor vertex v

degree and ΔG for the maximum degree of a graph G. Color set
notation CðGÞ ¼ C1;C2;⋯;Ck

� �
denotes a vertex coloring of size k, i.

e. a coloring that employs k different color numbers. C(G) parti-
tions the vertex set into k disjoint independent color sets Ci, each
one containing every vertex with color number i.

2. The branch-and-bound algorithm

Most efficient BnB algorithms for the MCP employ some form
of systematic enumeration of maximal cliques together with SEQ
heuristic to compute an upper bound for the clique number in
every subproblem.

Although other formulations are possible (e.g. a binary tree),
clique enumeration is typically described as a recursive procedure
that branches on every candidate vertex in order to enlarge the
clique in the current node. This leads to a binomial search tree in
which, at depth level k, every possible clique of size k is considered
[7]. Leaf nodes hold maximal cliques in the path to the root node
and are evaluated to test whether their clique number is greater
than the best clique found so far. If this is true, they replace the
existing solution.

Let S be the clique at the current node and let Smax be the best
solution found during search at any moment. All enumerations
starting from S that cannot improve Smax may be pruned. For any
candidate vertex v, color-based BnB solvers use c(v) as an upper
bound for the clique number of the hanging subproblem Gv. The
pruning condition is typically formulated as:

Sj jþcðvÞr Smaxj j ð2Þ
Konc and Janečič in [10] made an interesting interpretation of

(2). They define parameter kmin ¼ Smaxj j� Sj jþ1, so that the prun-
ing condition (2) becomes cðvÞokmin. Leading algorithms use kmin

explicitly to advantage during the bounding phase, as in the paper.
Tomita and Seki in [14] introduced the idea of branching on

maximum color. This has two important consequences: 1. If any
candidate vertex in Ckmin �1 is pruned, then all the remaining
vertices are also pruned; 2. Search is directed towards large cliques
(a coloring of a clique of size k must have size k).

Candidate vertices with the smallest degree should be picked
first at the root node to reduce the size of the search tree. A
common strategy for initial vertex sorting is the following

heuristic used to compute graph degeneracy: at the beginning, a
vertex v with minimum degree is removed from the initial set V
and placed last in the new list V '. In the next iteration, the vertex
with minimum degree in graph G\fνg is placed one before last in
V '; the process continues until all vertices are ordered. At the root
node vertices should be selected by non-decreasing degree to
reduce branching, so they are picked in reverse order from V '. It is
worth noting that a number of more sophisticated orderings
concerning tie-breaks have been suggested in practice (see e.g.
[15]).

A simple upper bound for every vertex at the root node is the
minimum value between its position in the ordering and the
maximum degree of the graph plus 1. It is used in leading solvers
BBMC and MCS and others. Tighter bounds may possibly produce
smaller search trees as suggested in [19].

Another important idea also used in MCS and BBMC is to keep the
initial vertex ordering fixed throughout the search. This produces on
average tighter SEQ colorings compared to vertices sorted according to
color as proposed in earlier algorithms [10,14]. Besides this implicit
branching strategy, MCS also describes recoloring (Re-NUMBER is the
term given to the procedure in the original paper). Recoloring is a
repair mechanism which is also related to infra-chromatic bounding
described in this paper. It is discussed in Section 4 inside the proposed
new algorithmic framework.

Procedures described in the paper employ the following
variables:

� U: a list of candidate vertices sorted according to the initial
ordering;

� Uv: a list of candidate vertices in the child subproblem which
contains only neighbors of vertex v;

� S: the current clique;
� Smax: the best clique found so far;
� L: a list of candidate vertices sorted according to color (highest

color last);
� Lv: a list of candidate vertices sorted according to color in the

child subproblem which contains only neighbors of vertex v;
� F: a list of forbidden colors;
� c(v): the color number assigned to vertex v;
� NU ðvÞ: the neighbor set of vertex v from the list of candidate

vertices in U;
� kmin: a pruning threshold, i.e. vertices assigned a lower color

number will be pruned;
� CðGvÞ: SEQ coloring of Gv, the subgraph induced by v;
� Ck: a color set of a SEQ coloring that contains all vertices with

color number k.

Listing 1 outlines the reference MCP algorithm described previously.
Steps 1–2, 4–10, 13–15 implement systematic enumeration (with
repetitions). Step 3 is the pruning step, which depends on the upper
bounds computed in UPPERBOUND (step 12). UPPERBOUND calls the
new bounding procedure described in Section 5.

Listing 1. Outline of the reference MCP algorithm

Input: a simple graph G¼ ðV ; EÞwith vertices sorted by smallest
degree-last

Output: a maximum clique with vertex set Smax

REFMC ðU; S; Smax; C; LÞ
Initial step:
U’V ; S’ϕ; Smax’ϕ; cðviÞ : ¼ min i; ΔGþ1

� �
; L’V

1. repeat until U ¼ ϕ
2. select a vertex v from L in reverse order //maximum color
branching

3. if ( Sj jþcðvÞr Smaxj j) then return //pruning step
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