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a b s t r a c t

This paper proposes an action-space-based global optimization (ASGO) approach for the problem of packing
unequal circles into a square container such that the size of the square is minimized. Starting from several
random configurations, ASGO runs the following potential descent method and basin-hopping strategy
iteratively. It finds configurations with the local minimum potential energy by the limited-memory BFGS
(LBFGS) algorithm, then selects the circular items having the most deformations and moves them to some
large vacant space or randomly chosen vacant space. By adapting the action space defined for the rectangular
packing problem, we approximate each circular item as a rectangular item, thus making it much easier to
find comparatively larger vacant spaces for any given configuration. The tabu strategy is used to prevent
cycling and enhance the diversification during the search procedure. Several other strategies, such as
swapping two similar circles or swapping two circles in different quadrants in the container, are combined to
increase the diversity of the configurations. We compare the performance of ASGO on 68 benchmark
instances at the Packomania website with the state-of-the-art results. ASGO obtains configurations with
smaller square containers on 63 instances; at the same time it matches or approaches the current best
results on the other five instances.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The packing problem is a well-known NP-hard problem, and it is
concerned with how to pack a certain number of circles of given radius
inside a container with no overlap. The shape of the container can be a
circle, a rectangle, a square or a polygon, and the items can be circles,
rectangles or irregular items. The packing problem has a wide range of
applications in the areas of marine transportation, motor cycle industry,
material cutting, fashion industry, wireless communication, food
industries, etc. As an NP-hard problem, there exists no exact algorithm
for solving it to optimality in polynomial time unless P¼NP.

If the items to be packed are circles, the problem is called the
circles packing problem (CPP), which has been subject of study by a
wide spectrum of different approaches in the literature. The problem
can be classified into two categories, in accordance with the items
being equal circles or unequal circles. Besides, there is an important
extension of the circle packing problem with equilibrium constraints
(CPPEC) [1,2].

For the problem of packing equal circles, most heuristic approaches
are based on a quasi-physical or quasi-human method. Lubachevsky
and Graham [3] proposed a billiards simulation algorithm based on
the collision forces among objects: they regarded each cycle item as a
rigid billiard and considered their movements under the collision
force. They also proved that their algorithm could obtain optimal
solutions when the number of circles n equals 3kðkþ1Þþ1 for any
positive integer k. Grosso et al. [4] presented a genetic algorithm based
on the monotonic basin-hopping (MBH) strategy and on a population
basin-hopping strategy. Huang and Ye [5,6] regarded each item as an
elastic circle. They also considered the smooth movement driven by
elastic forces and the violent movement driven by strong repulsive
forces and attractive forces and proposed a quasi-physical global
optimization method. By adapting an improved energy-landscape-
paving method (ELP), Liu et al. [7] incorporated a new configuration
update mechanism into the ELP method.

For the problem of packing unequal circles into a larger container,
the methods can be classified into two categories: constructive
heuristics and global search heuristics. For the constructive heuristics,
George et al. [8] formulated this situation as a nonlinear mixed integer
programming problem and developed some heuristic procedures,
including a genetic algorithm and a quasi-random technique. Huang
et al. [9] defined the concept of hole degree in order to select the next
circle to place and applied a lookahead search strategy. Lü and Huang
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[10] incorporated the pruned-enriched Rosenbluth method (PERM)
into the strategy of the maximum cave degree. The PERM strategy was
to prune and enrich branches efficiently, while the concept of maxi-
mum hole degree was defined to evaluate the benefit of a partial
configuration. By improving the algorithms B1.0 and B1.5 [11], Kubach
et al. [12] formulated some greedy algorithms, and they parallelized
these algorithms by utilizing a master-slave approach followed by a
subtree-distribution model. Akeb and Hifi [13] proposed an augmen-
ted algorithmwhich combined a beam search, a binary search, and the
multi-start strategy; they also incorporated a strategy based on
separate beams, instead of pooled ones, to increase the efficiency of
the algorithm. For the global search heuristics, Stoyan and Yas'kov [14]
utilized the reduced gradient method for local optimization, then
translated one local minimum to another local minimum based on the
concept of active inequalities and the Newton method. Hifi et al. [15]
defined an energy function for the local optimization, and by utilizing
some configuration transformation methods, they proposed a simu-
lated annealing approach. Fu et al. [16] proposed an iterated tabu
search procedure to improve the randomly generated solution, then a
perturbation operator was subsequently employed to reconstruct the
current solution and an acceptance criterion was implemented to det-
ermine whether to accept the perturbed solution or not. Lopez and
Beasley [17] viewed the problem as being one of scaling the radii of
the unequal circles so that they could be packed into the container,
and their algorithm was also composed of an optimization phase
which was based on the formulation space search method, while the
improvement phase created a perturbation of the current solution by
swapping two circles.

In 2011 and 2012, He et al. proposed the concept of action space
for solving the rectangular packing problem. An action space in a
configuration is an unoccupied rectangular space that a dummy
rectangle could be feasibly placed in and each edge of the dummy
rectangle pastes at least one placed item or the boundary of the
container. Inspired by their concept of action space, we propose an
action-space-based global optimization (ASGO) algorithm for the
problem of packing unequal circles into a square container (PUCS).
There are three procedures in ASGO. Given some configurations, we
utilize the LBFGS [18] algorithm for continuous optimization to reach
the local minimums. Then we approximate each circular item as a
rectangular item and an action space based basin-hopping strategy is
adapted to find the larger vacant spaces such that the search

procedure could jump from a local minimum to a more promising
area. A post processing is added to improve the accuracy of the result.
In the experiments, numerical results are presented and compared
with the best-known results taken from the Packomania website
maintained by Specht [19].

2. Problem formulation

In the problem of packing unequal circles into a square container
(PUCS), we are given n(nANþ ) circle items C1;…;Cn, each circle
having radius ri, and we want to find a nonoverlapping dense
packing of the circle items into a square container such that the size
W of the square container is as small as possible. If we place the
center of the square at the origin of a 2D Cartesian coordinate system,
and denote the center coordinate of item Ci as ðxi; yiÞ(as shown in
Fig. 1(a)), then X ¼ ðx1; y1; x2; y2;…; xn; ynÞ could uniquely denote a

packing configuration. Define Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ2þðyi�yjÞ2

q
, which indi-

cates the Euclidean distance between the center of Ci and Cj, as
shown in Fig. 1(b). The problem can be formulated as follows:

min W

s:t: ðiÞ ðj xi j þri; jyi j þriÞþ r0:5W
ðiiÞ DijZriþrj

where the symbol ðx; yÞþ 9maxðx; yÞ for variables x and y, and i; j
imply to 1;2;…;n; ia j. Constraint (i) indicates that each circle
should be placed completely in the container. Constraint (ii) indicates
that any pair-wise circles must not overlap each other.

Regard all the circles as smooth elastic disks and regard the
square container as a rigid hollow object. According to the elastic
mechanics, the elastic deformation, caused by the overlaps between
two disks or between a disk and the borders of the container, will
generate elastic potential energy, which can be used to measure the
feasibility of a given configuration (X,W). We define the overlapping
depth of Ci and Cj as follows:

dij ¼ ðriþrj�DijÞþ ð1Þ
where symbol xþ 9maxðx;0Þ for a variable x. The overlapping
depths between the disk Ci and respectively the vertical or horizontal
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Fig. 1. Constraints of the PUCS problem.
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