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The corridor allocation problem (CAP) seeks an effective placement of given facilities in two parallel rows
on opposite sides of a central corridor. The placement of the facilities in both the rows starts from the
same level along the corridor and no gap is allowed between two facilities of a row. The CAP is
formulated here as a nonlinear bi-objective optimization problem, in which both the overall flow cost
among the facilities and the length of the corridor are to be minimized. A permutation-based genetic
algorithm (pGA) is applied to handle the CAP as an unconstrained bi-objective optimization problem.

The performance of the pGA is demonstrated through its application to a number of instances of varying
sizes available in the literature. The results presented in this paper can be used as benchmark instances
in the future work on the CAP.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A layout is an arrangement of departments or machines in space.
Associated with a layout is the material handling cost (or flow cost),
which is to be minimized. The material handling cost depends upon
the type and order of arrangement of given facilities around a central
corridor. The single row facility layout problem (SRFLP) seeks to
arrange the given facilities in a row on one side of a corridor. The
SRFLP has applications such as the arrangement of machines on a
straight path traveled by an automated guided vehicle, arrangement
of books in a shelf, arrangement of departments in office build-
ings, and so on. It has received much attention in the literature
(see, e.g., [1-5,7,10,15-25]).

In recent years, Amaral [3] and Chung and Tanchoco [6] have
described the double row layout problem (DRLP), which seeks to
arrange given facilities, on two sides (two parallel rows) of a central
corridor or aisle, by minimizing the total material handling cost
among the facilities. In their DRLP formulations, the placement of
facilities in the two rows can be started from two different points
along the corridor. Moreover, some gap (free space) can also be
allowed between two adjacent facilities of a row, if that gap further
minimizes the overall material handling cost among all the facilities
(it is to be noted that this gap is not any mandatory clearance
between two machines, which might be required for the purpose of
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maintenance and/or for storing jobs). Such considerations may be
acceptable in some applications, like planning machines in a big hall
or workshop. However, in many cases, such as the office rooms in an
administrative building or the shops in a supermarket, the placement
of facilities (rooms or shops) in two rows is to be started from a
common point along the corridor. Further, any physical gap between
two adjacent facilities of a row is generally not preferred even if such
a restriction increases the material handling cost. This scenario is
studied here as the Corridor Allocation Problem (CAP), in which given
facilities are arranged in two rows starting from a common point
along the corridor and no gap is allowed between two adjacent
facilities of a row.

The CAP is formulated here as a bi-objective optimization
problem for minimizing (i) the overall flow cost among the
facilities arranged on two sides of a corridor and (ii) the required
length of the corridor. A permutation-based genetic algorithm
(pGA) is investigated for the bi-objective CAP model. An individual
of the pGA is defined as a permutation of given facilities, which is
later on split into two parts in order to form a valid CAP solution.
The pGA population is initialized by random permutations of the
facilities, and then it is gradually improved towards the final trade-
off optimum solutions using problem-specific genetic operators.
The operators are designed specially to generate only feasible
permutations of the facilities, so that the pGA can handle the CAP
as an unconstrained optimization problem. A number of instances
of various sizes from 9 to 80, available in the literature, are
considered for evaluating the performance of the pGA.

The rest of the paper is organized as follows: the CAP is
analyzed and formulated as a bi-objective optimization problem
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in Section 2. The proposed pGA is explained in Section 3. The
computational experiments are presented in Section 4, followed
by the conclusions of the paper in Section 5.

2. Bi-objective CAP model

The CAP involves the placement of n, facilities on one side of a
corridor and another n, facilities on the other side of the corridor,
starting from a common point along the corridor and without
allowing any gap between two adjacent facilities of a row. An
effective placement of the facilities is expected to minimize the
overall material handling cost as well as the required length of the
corridor. Since two different requirements are there, the nature of
the CAP is first studied before formulating a CAP model.

2.1. Nature of the CAP

If the facilities in a layout design are arranged in two parallel
rows, instead of in a single row, certainly the overall flow cost will
be reduced as the distances among many facilities arranged across
the corridor would be reduced. Accordingly, the required length of
the corridor will also be reduced. In that sense, it seems that the
overall flow cost and the length of the corridor are correlated, i.e.
both will get minimized/maximized simultaneously. However, it is
not always true, but sometime they may conflict with each other
at the optimum (it is observed from the numerical experiments in
Section 4 that the flow cost and the corridor length conflict with
each other in most of the cases, while they are correlated in some
instances only). Accordingly, the nature of the CAP is investigated
here through two examples.

As the first illustrative example of the CAP, consider a case of
9 facilities having a length vector of {2,8,9,7,3,4,6,8,9} and an upper-
triangular flow cost matrix of {0,2,8,74,0,1,6; 8,0,2,74,4,6; 2,7,8,0,2,6;
5,0,8,8,6; 5,4,7,6; 8,2,6; 4,6; 6}, where the facilities are to be arranged
on two sides of a corridor starting from its left end (it is the instance
marked by S9 in Table 1 under Section 4.1). For simplicity, a negligible
corridor width, i.e. w=0, is considered. Fig. 1 shows the ordering of
the facilities with the minimum of both the flow cost and the corridor
length (having values of 1181.5 and 28, respectively), where x; is the
centroidal distance of the ith facility measured along the corridor
from its left end (see Eqs. (1)-(4) below for computations). Since both
the flow cost and the corridor length are optimized (minimized)
together, in this example they are clearly correlated with each other.

In the second example, consider a case of 10 facilities having a
length vector of {6,3,9,4,2,6,8,9,6,7} and an upper-triangular flow cost
matrix of {095,1,454,70; 45272907, 0725094; 790,5,2,5;
04,72,12; 49,3,5; 0,2,9; 1,7; 0} (it is the instance marked by S10 in
Table 1 under Section 4.1). Fig. 2(a) shows the ordering of the facilities
obtaining the minimum flow cost of 1374.5 over a corridor length of
31. Another interesting and important observation in the case of this
example is shown in Fig. 2(b), where a better corridor length (=30)
than that in Fig. 2(a) is obtained just by interchanging the last two
pairs of facilities of the two rows (i.e. shifting the first and third
facilities from the upper row to the lower row, and the seventh and
ninth facilities from the lower row to the upper row). The better
corridor length in Fig. 2(b), however, degrades (increases) the flow
cost from 1374.5 to 1393.5. Therefore, Fig. 2(a) and Fig. 2(b) reveal that,
in this example, the flow cost and the corridor length conflict with
each other.

The above two examples depict that the nature of the CAP is
instance-specific; some can be handled as single-objective
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Fig. 1. A CAP example of 9 facilities with correlated flow cost and corridor length.
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Fig. 2. A CAP example of 10 facilities with conflicting flow cost and corridor length. (a) Flow cost=1374.5 and corridor length=31, (b) flow cost=1393.5 and corridor

length=30.
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