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a b s t r a c t

The generalized vehicle routing problem (GVRP) involves finding a minimum-length set of vehicle routes
passing through a set of clusters, where each cluster contains a number of vertices, such that the tour
includes exactly one vertex from each cluster and satisfies capacity constraints. We consider a version of
the GVRP where the number of vehicles is a decision variable. This paper introduces a new mathematical
formulation based on a two-commodity flow model. We solve the problem using a branch-and-cut
algorithm and a metaheuristic that is a hybrid of the greedy randomized adaptive search procedure
(GRASP) and the evolutionary local search (ELS) proposed in [18]. We perform computational experiments
on instances from the literature to demonstrate the performance of our algorithms.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The capacitated vehicle routing problem (CVRP) is one of the most
popular and challenging combinatorial optimization problems. It
involves finding the optimal set of routes for a fleet of vehicles that
serves a given set of customers. In classical transportation problems,
each customer is served from only one vertex. Therefore, there is
always a well-defined set of vertices that must be visited, and we
need to find the solution from this set. However, in many real
applications a customer can be served from more than one vertex,
and the resulting problems are more complex. The GVRP is a
generalization of the CVRP and also an extension of the generalized
traveling salesman problem (GTSP). The GVRP can model problems
concerned with the design of bilevel transportation networks; see
[6] and [16] for further information on its applications.

The GVRP is defined as follows. Let G¼ ðV ; EÞ be an undirected
graph, where V is the vertex set and E is the edge set. V ¼ fv0;…; vn�1g
is the set of n vertices that can be visited, and vertex v0 is the depot,
containingm identical vehicles with a common capacity Q. C ¼ fC0;…;

CK�1g is the set of K clusters. Each cluster Ci except C0, which contains
only the depot, has a demand Di. Each cluster includes a number of
vertices of V, and every vertex in V belongs to exactly one cluster. For
each viAV , let αðiÞ be the cluster that contains vertex vi. The term
DðSÞ ¼∑ijCi DSDi is used to represent the total demand in set S which

is a subset of V. The number of vehicles m can be constant or variable.
A length cij is associated with each edge of E¼ ffvi; vjg : vi; vjAV ; io jg.
The GVRP consists in finding m vehicle routes such that (i) each route
begins and ends at the depot; (ii) each route visits exactly one vertex
of each cluster and visits it only once; (iii) the demand served by each
route does not exceed the vehicle capacity Q; and (iv) the total cost is
minimized.

The GVRP is clearly NP-hard since it reduces to a VRP when each
cluster includes only one vertex or to a GTSP when the capacity
constraints are relaxed. The number of papers on this topic is quite
limited. The problemwas first introduced by Ghiani and Improta [8].
In 2003, Kara and Bektaş [9] proposed the first formulation that was
polynomial in the number of constraints and variables. An ant
colony algorithm and a genetic algorithm were proposed in [17]
and [14] respectively. Recently, Bektaş et al. [6] proposed four
formulations and four branch-and-cut algorithms. They concluded
that the best formulation was an undirected two-index flow one
based on an exponential number of constraints. They also proposed
a heuristic based on large neighborhood search (LNS) to provide
upper bounds for the branch-and-cut algorithms. At the same time,
Pop et al. [16] introduced two new formulations. The first, the node
formulation, is similar to the formulation in [9] but produces a
stronger lower bound, and the second is a flow-based formulation.
The authors directly solved one instance from [8] using CPLEX. They
reported no further computational experience with the proposed
formulations and did not develop branch-and-cut algorithms.

In this paper, we consider a version of the GVRP that has not
been investigated in the literature where the number of vehicles is
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a decision variable. This version of the problemwould allow determin-
ing the appropriate fleet size to minimize the daily routing cost. We
make two contributions: (i) we present a new formulation for the
GVRP, and (ii) we propose an exact method and a metaheuristic to
solve the problem. Computational experiments show that our exact
approach can solve instances of up to 121 vertices and 51 clusters, and
our metaheuristic gives high-quality solutions for the instances tested
in a reasonable computational time. Compared to the formulation
proposed in [6], our formulation provides better lower bounds and
better performance of the branch-and-cut algorithm.

The remainder of the paper is organized as follows. Section 2
describes our formulation and several valid inequalities. The branch-
and-cut algorithm and the metaheuristic are presented in Sections 3
and 4 respectively. Section 5 discusses the computational results, and
Section 6 summarizes our conclusions.

2. New formulation for the GVRP

We first reintroduce the best formulation of [6]. Note that Bektaş
et al. [6] tackle the case in which the number of vehicles is constant.
To adapt it to the context where the number of vehicles is variable,
we simply consider the number of vehicles m in the formulation
as a decision variable. This formulation uses integer variables
zij; fvi; vjgAE that count the number of times the edge fvi; vjg is
used. Let δðSÞ ¼ ffvi; vjgAE : viAS; vj =2Sg and zðFÞ ¼∑fvi ;vjgA Fzij
where F is a subset of E. Then the formulation is as follows:

Minimize ∑
fvi ;vjgAE

cijxij ð1Þ

Subject to zðδðCkÞÞ ¼ 2 8CkAC\C0 ð2Þ

zðδðC0ÞÞ ¼ 2m ð3Þ

zðδðSÞÞþ2 ∑
fvi ;vjgAL:i=2S

zðfig

: CjÞr2 8CkAC\C0; SDCk; LALk ð4Þ

∑
ðvi A S1 ;vj AS2Þ

zijr jSj�⌈
DðSÞ
Q

⌉ 8S1DS;

S2DS; SDC; jSjZ2 ð5Þ

zijAf0;1;2g 8fvi; vjgAδð0Þ ð6Þ

zijAf0;1g 8fvi; vjgAE\δð0Þ ð7Þ

mAN: ð8Þ
In this formulation, constraints (2) ensure that each cluster is

visited exactly once. Constraints (3) imply that m vehicles will leave
the depot. Constraints (4) are referred to as same-vertex inequalities;
they ensure that when a vehicle arrives at a certain vertex in a
cluster, it will depart from the same vertex. Here, Lk ¼ fL : LD
⋃iACk

Li; jL \ Lij ¼ 1; 8 iACk} where Li ¼ fig � ðC\f0;αðiÞgÞ, defined
for all viAV\v0. Constraints (5) are the capacity constraints.

We now describe a new integer programming formulation for
the GVRP. The idea underlying this formulation was first intro-
duced by [7] for the traveling salesman problem (TSP). Langevin
et al. [11] extended this approach to the TSP with time windows.
Baldacci et al. [3] used it to derive a new formulation and a
branch-and-cut algorithm for the VRP, and Baldacci et al. [2]
adapted it for the covering tour problem (CTP) without capacity
constraints. Currently, together with the two-index flow formula-
tion and the set partitioning formulation, this is one of the most
successful formulations underlying exact methods for the CVRP
(see [4]).

Our formulation is an extension of that proposed by Baldacci
et al. [3] for the CVRP. To adapt this idea for the GVRP, we assume
that each vertex vi of V has a demand di equal to the demand DαðiÞ
of the cluster to which it belongs. In other words, all the vertices in
a cluster have the same demand as that of the cluster. The
difference from CVRP is that we do not need to visit all the
vertices of V.

We first extend the original graph G to G ¼ ðV ; EÞ by adding a
new vertex vn, which is a copy of the depot v0. We now have
V ¼ V [ fvng, V ′¼ V \fv0; vng, E ¼ E [ ffvi; vng; viAV ′g, and cin ¼
c0i 8viAV ′.

This formulation requires two flow variables, fij and fji, to
represent an edge of a feasible GVRP solution along which the
vehicle carries a load of Q units. When the vehicle travels from vi
to vj, flow fij represents the load collected and flow fji represents
the empty space of the vehicle (i.e., f ji ¼Q�f ij).

Let xij be a 0–1 variable equal to 1 if edge fvi; vjg is used in the
solution and 0 otherwise. Let yi be a binary variable that indicates
the use of vertex vi in the solution. Then the GVRP can be stated as

Minimize ∑
fvi ;vjgAE

cijxij ð9Þ

Subject to ∑
vi ACk

yi ¼ 1 8CkAC ð10Þ

∑
vi AV ;iok

xikþ ∑
vj AV ;j4k

xkj ¼ 2yk 8vkAV ′ ð11Þ

∑
vj AV

ðf ji�f ijÞ ¼ 2diyi 8viAV ′ ð12Þ

∑
vj AV ′

f 0j ¼ ∑
vi AV ′

diyi ð13Þ

∑
jAV ′

f nj ¼mQ ð14Þ

f ijþ f ji ¼ Qxij 8fvi; vjgAE ð15Þ

f ijZ0; f jiZ0 8fvi; vjgAE ð16Þ

xijAf0;1g 8fvi; vjgAE ð17Þ

yiAf0;1g 8viAV ′ ð18Þ

mAN: ð19Þ

Fig. 1. Flow paths for solution with two routes.
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