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a b s t r a c t

We consider the asymmetric bottleneck traveling salesman problem on a complete directed graph on n
nodes. Various lower bound algorithms are proposed and the relative strengths of each of these bounds
are examined using theoretical and experimental analysis. A polynomial time ⌈n=2⌉�approximation
algorithm is presented when the edge-weights satisfy the triangle inequality. We also present a very
efficient heuristic algorithm that produced provably optimal solutions for 270 out of 331 benchmark test
instances. Our algorithms are applicable to the maxmin version of the problem, known as the maximum
scatter TSP. Extensive experimental results on these instances are also given.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let G¼ ðV ; EÞ be a directed or undirected graph with n¼ jV j and
m¼ jEj. For each edge ði; jÞAE, a nonnegative cost cij is prescribed.
Without loss of generality, we assume that G is complete. The n�n
matrix C ¼ ðcijÞn�n is called the cost matrix. Let ΠðGÞ be the
collection of all (directed) Hamiltonian cycles in G. Then the
bottleneck traveling salesman problem (BTSP) [20] is to find a
Hamiltonian cycle (tour) in G whose largest edge cost is as small as
possible, i.e.

Minimize maxfcij : ði; jÞAHg

subject to HAΠðGÞ: ð1Þ

Akin to the traveling salesman problem (TSP), BTSP instances are
classified as either symmetric (i.e. cij ¼ cji for all i; jAV) or asym-
metric (i.e. cijacji for some i; jAV).

BTSP is a special case of the minmax combinatorial optimization
problem [37]. For a complete discussion on the complexity of the
BTSP we refer to the book chapter by Kabadi and Punnen [26]. In
particular, the BTSP is NP-hard, and, unless P¼NP, no polynomial
time ϵ�approximation algorithm exists for the problem for any
ϵ41 [14,33,43]. Much like the TSP, polynomial time approximation
algorithms with guaranteed performance ratios exist for BTSP on
specially structured problem data [6,14,22,26,33]. Moreover, sev-
eral special cases of the problem can be solved to optimality in
polynomial time [26].

Garfinkel and Gilbert discussed a branch and bound based exact
algorithm to solve the BTSP and reported computational results
with a construction heuristic on randomly generated problems of
sizes up to 100 nodes [18]. Timofeev [47] reported experimental
results on problems of similar size but with a heuristic algorithm.
Sergeev proposed a dynamic programming approach [45] while
Carpento et al. reported experimental results with a branch and
bound algorithm on problems of size up to 200 nodes [11].
Ramakrishnan et al. presented experimental results with a thresh-
old heuristic on 72 symmetric TSPLIB problems of size up to 783
cities [40] and Ahmad [1] reported experimental results using
algorithms based on lexicographic search for symmetric TSPLIB
instances with less than 300 cities. In a small computational study
with less than 100 cities, Ahmad [2] reported experimental results
on asymmetric BTSP instance using a lexicographic search based
algorithm. Very recently, LaRusic et al. [29] reported extensive
experimental results on the symmetric version of BTSP on almost
all available test problems (TSPLIB, Johnson–McGeoch random
instances, VLSI and National TSP instances up to 31,623 nodes)
and obtained optimal solutions for most of these instances.

In this paper, we focus on the asymmetric version of the BTSP
which is not thoroughly investigated in the literature. The best
known performance ratio of a polynomial time approximation
algorithm for the symmetric TSP with cost matrix satisfying
triangle inequality is 3

2 [12] whereas for the asymmetric TSP it is
Oðlog nÞ [17]. Reducing this gap is a well known open problem. In
the case of BTSP, it is well known that the symmetric version can
be approximated with a performance ratio of 2 whenever the edge
weights satisfy the triangle inequality [14,26,33] and this is the
best possible bound for a polynomial time algorithm (unless
P¼NP) for this class of cost matrices. For the asymmetric BTSP,
no polynomial time approximation algorithm with bounded
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performance ratio is known even with triangle inequality assump-
tion on the cost matrix. We give a polynomial time approximation
algorithm for asymmetric BTSP with performance ratio ⌈n=2⌉
whenever the edge costs satisfy the triangle inequality, and
generalize this result to the case where edge costs satisfying the
τ�triangle inequality.

Further, extending the algorithms for the symmetric version
reported in [29], we develop a binary search based heuristic for the
asymmetric BTSP and report results of extensive computational
experiments on all available benchmark test instances for the asym-
metric TSP. To the best of our knowledge, no such extensive
computational study on asymmetric BTSP is available in the literature.
Our algorithm produced optimal solutions for 270 out of 331
problems considered and this is achieved within a very reasonable
computational time. We establish optimality certificate in the major-
ity of instances by developing various lower bounding schemes that
produce very tight bounds. Extensive theoretical and experimental
comparisons of these lower bounds are also given. The optimality of
the remaining problems is established by an exact optimization
scheme which is obtained by modifying our heuristic algorithm.

The maxmin version of the BTSP is called the maximum scatter
traveling salesman problem (MSTSP) [5] which is defined as follows:

Maximize minfcij : ði; jÞAHg
subject to HAΠðGÞ: ð2Þ

Arkin et al. [5] showed that the symmetric version of MSTSP is
NP-Complete, and no constant-factor approximation algorithm
exists for the problem unless P¼NP. They also provided a
2-approximation algorithm for the MSTSP with a symmetric cost
matrix satisfying the triangle inequality and discussed applications
of the model in sequencing rivet operations when fastening sheets
of metal together in the aircraft industry among others. Kabadi and
Punnen [26] obtained a 2τ�approximation algorithm for the
MSTSP whenever the cost matrix satisfies the τ�triangle inequality
and this is the best possible bound for such cost matrices.

The MSTSP can be formulated as a BTSP using the transforma-
tion dij ¼M�cij where D¼ ðdijÞn�n is the cost matrix for the
equivalent BTSP and M is a sufficiently large number. While this
transformation preserves optimality, it does not preserve
ϵ�optimality. However, we show that the heuristic developed for
the BTSP works reasonably well in practice for the MSTSP under
this transformation.

The paper is organized as follows. Section 2 discusses approx-
imation algorithms for the BTSP. In Section 3 we consider lower
bounds for the asymmetric BTSP and Section 4 discusses our
primary heuristic algorithm, which can easily be modified into an
exact BTSP solver. Extensive computational results are reported
and discussed in Section 5. Section 6 presents computational
results on MSTSP, and concluding remarks are given in Section 7.

For any directed graph G δþ ðvÞ and δ�ðvÞ, respectively, denote
the in-degree and the out-degree of vertex v. Since we assume that
G is a complete digraph, an instance of BTSP is completely defined
by the cost matrix C. For that reason, we use the terminology BTSP
on G and BTSP on C interchangeably. Also, for simplicity, a tour in G
with cost matrix C is sometimes referred to as a tour in C. A lower
bound for a problem means a lower bound for the optimal
objective function value of the problem. Finally, for any spanning
subgraph S of G, we denote CmaxðSÞ ¼maxfcij : ði; jÞASg.

2. Approximation algorithms

Approximation algorithms for TSP is a thoroughly investigated
research area and the behavior of its symmetric and asymmetric
versions are quiet different in terms of approximability. When the
edge costs satisfy the triangle inequality, the symmetric version

has a 3
2�approximation algorithm [12] while the best known

performance ratio for the asymmetric version is Oðlog nÞ
[17,27,28]. The behavior of the BTSP in terms of approximability
appears even more intriguing. The symmetric version can be
approximated within a factor of 2 whenever the cost matrix
satisfies the triangle inequality and this is the best possible
performance bound (unless P¼NP). For the asymmetric version
no ϵ�approximation algorithm is reported in the literature for any
ϵ41 even if the edge costs satisfy the triangle inequality. It is easy
to see that no polynomial time approximation algorithm with a
data independent performance ratio exists for BTSP (unless P¼NP)
on an arbitrary cost matrix [33]. Thus we restrict our attention in
this section to asymmetric instances where the edge weights
satisfy the τ�triangle inequality. Note that a cost matrix
C ¼ ðcijÞn�n satisfies τ�triangle inequality if cijrτðcikþckjÞ for all
i; j; kAV .

The tth power of a graph (not necessarily complete) G is the
graph Gt ¼ ðV ; EtÞ, where ðu; vÞAEt whenever a path from u to v

exists in G with at most t edges.

Theorem 1. Let C be the cost matrix associated with a complete
digraph G satisfying τ�triangle inequality for some τ41

2 and let H0 be
an optimal solution to the BTSP on G. Let S be a spanning subgraph of
G such that CmaxðSÞrCmaxðH0Þ. If the graph St, 1rton and integer t,
contains a Hamiltonian cycle H, then

CmaxðHÞ
CmaxðH0Þ

r

t if τ¼ 1
τ

τ�1
2τt�1�τt�2�1
� �

if τ41

τ
τ�1

τt�1þτ�2
� �

if τo1

8>>>><
>>>>:

Theorem 1 above was originally proved by Kabadi and Punnen
[26] for the symmetric BTSP case. However, the proof is almost
identical for the asymmetric version and hence we skip the
detailed proof.

Our approximation algorithmwas inspired by the 2-approximation
algorithm for BTSP on a complete undirected graphs with edge-
costs satisfying the triangle inequality discussed in [33,26,14,22]. A
formal description of our approximation algorithm for BTSP on a
complete directed graph G is given below.

Algorithm Approx-BTSP:

� Step 1: Compute a bottleneck strongly connected spanning
subgraph S of G.

� Step 2: Find St for t ¼ ⌈n=2⌉.
� Step 3: Output any hamiltonian cycle in St.

To establish the complexity and performance ratio of algorithm
Approx-BTSP we use the following well known theorem of
Ghouilà-Houri [19].

Theorem 2 (Ghouilà-Houri [19]). If G is a directed graph on n
vertices and minfδþ ðvÞ; δ�ðvÞgZn=2 for every vertex vAG, then G
is Hamiltonian.

Theorem 3. Algorithm Approx-BTSP runs in polynomial time and
guarantees an ϵ�optimal solution for the asymmetric BTSP whenever
the edge-costs satisfy the τ�triangle inequality, where

ϵ¼

n
2

l m
if τ¼ 1;

τ
τ�1

2τ⌈n=2⌉�1�τ⌈n=2⌉�2�1
� �

if τ41;

τ
τ�1

τ⌈n=2⌉�1þτ�2
� �

if τo1:

8>>>>><
>>>>>:

Proof. Let H0 be an optimal solution to the BTSP on G. Since S is a
strongly connected spanning subgraph of G, we have CmaxðSÞr
CmaxðH0Þ. Thus by Theorem 1, the performance ratio holds. We now
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