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a b s t r a c t

The Quadratic Knapsack Problem (QKP) is one of the well-known combinatorial optimization problems. If
more than one knapsack exists, then the problem is called a Quadratic Multiple Knapsack Problem
(QMKP). Recently, knapsack problems with setups have been considered in the literature. In these
studies, when an item is assigned to a knapsack, its setup cost for the class also has to be accounted for in
the knapsack. In this study, the QMKP with setups is generalized taking into account the setup constraint,
assignment conditions and the knapsack preferences of the items. The developed model is called
Generalized Quadratic Multiple Knapsack Problem (G-QMKP). Since the G-QMKP is an NP-hard problem,
two different meta-heuristic solution approaches are offered for solving the G-QMKP. The first is a
genetic algorithm (GA), and the second is a hybrid solution approach which combines a feasible value
based modified subgradient (F-MSG) algorithm and GA. The performances of the proposed solution
approaches are shown by using randomly generated test instances. In addition, a case study is realized in
a plastic injection molding manufacturing company. It is shown that the proposed hybrid solution
approach can be successfully used for assigning jobs to machines in productionwith plastic injection, and
good solutions can be obtained in a reasonable time for a large scale real-life problem.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The knapsack problem (KP) is a well-known combinatorial opti-
mization problem. The classical KP seeks to select, from a finite set of
items, the subset, which maximizes a linear function of the items
chosen, subject to a single capacity constraint. In many real life
applications, it is important that the profit of packing should also
reflect how well the given items fit together. One formulation of such
interdependence is the quadratic knapsack problem (QKP). The QKP
asks to maximize a quadratic objective function subject to a single
capacity constraint. Portfolio management problems, the determina-
tion of the optimal sites for communication satellite earth stations or
railway stations are good examples of the QKP [8]. The QKP was
introduced and solved using a branch-and-bound algorithm by Gallo,
Hammer and Simeone in 1980. Later, different branch and bound
based solution techniques were offered by Chaillou, Hansen and
Mahieu [7], by Michelon and Veuilleux [22] and by Billionnet and
Calmels [3]. An exact algorithmwas developed by [5] and by Billionnet
and Soutif in 2003. In 2005, a greedy Genetic Algorithmwas proposed
by Julstrom. A survey of upper bounds presented in the literature has
been given, and the relative tightness of several of the bounds has

been shown by Pisinger [23]. In the same year, Xie and Liu [30]
presented a mini-swarm approach for the QKP. In 2009, Sipahioglu
and Saraç examined the performance of the modified subgradient
algorithm (MSG) to solve the 0-1 QKP and they showed that the MSG
algorithm can be successfully used for solving the QKP.

The Quadratic multiple knapsack problem (QMKP) extends the
QKP with k knapsacks, each with its own capacity ck. Hiley and
Julstrom [13] proposed the first study regarding QMKP in the
literature. The paper introduced three heuristic approaches, namely
the greedy heuristic, the stochastic hill-climber and the Genetic
Algorithm (GA). The greedy heuristic fills the knapsacks one item at a
time, always choosing the unassigned item with the highest profit/
weight ratio of values to other items with a weight smaller than the
remaining capacity of the knapsack. The hill-climber's neighbor
operator removes objects from each knapsack, and then refills the
knapsack greedily as in the greedy heuristic. The hill-climber's
neighbor operator also serves as the GA's mutation. Saraç and
Sipahioglu [25] proposed a hybrid genetic algorithm to solve the
QMKP. They developed a specialized crossover operator to maintain
the feasibility of the chromosomes and presented two distinct
mutation operators with different improvement techniques from
the non-evolutionary heuristic. They also showed that their GA was
more successful than the GA presented by Hiley and Julstrom [13],
especially in the case where the number of knapsacks (k) increases.
In 2007, Singh and Baghel proposed a steady-state grouping genetic
algorithm for the QMKP. Like Hiley and Julstrom [13], they also
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assumed that all the knapsack capacities ck where the same. They
compared their results with two previously proposed methods; the
genetic algorithm and the stochastic hill climber [13]. The results
show the effectiveness of their approach. The average solution values
obtained were always better than those obtained with the genetic
algorithm and the stochastic hill climber. In 2010, [28] proposed a
variant of the artificial bee colony algorithm for the QMKP. Their
computational results show the superiority of their approach over
other approaches in terms of solution quality.

In recent years, studies by McLay and Jacobson [20], Caserta
et al. [6], Altay et al. [1], Michel et al. [21] on the knapsack problem
that takes setup constraints into consideration have begun to be
included in the literature. In these problems, when an item is assigned
to a knapsack, the setup cost for its class also has to be attained to the
knapsack. Further, not only the weight of the item, but also the cost for
the setup has to be taken into consideration in terms of capacity
utilization. In the literature, items that required a common setup,
rather than separate setups, when being assigned to the same
knapsack, were considered as items of the same class or family. McLay
and Jacobson [20] provide three dynamic programming algorithms
that solve the Bounded Setup Knapsack Problem (BSKP) in pseudo-
polynomial time and a fully polynomial-time approximation
scheme (FPTAS). One of the dynamic programming algorithms pre-
sented solves the Bounded Knapsack Problem (BKP) with the same
time and space bounds of the best known dynamic programming
algorithm for the BKP. The FPTAS improves the worst-case time bound
for obtaining approximate solutions to the BKP compared to using
FPTASs designed for the BKP or the 0-1 Knapsack Problem. Caserta
et al. [6], proposed a new meta-heuristic based algorithm for the
integer knapsack problem with setups. The proposed algorithm is a
cross entropy based algorithm, where the meta-heuristic scheme
allows a relaxation of the original problem to a series of well-chosen
standard knapsack problems, solved through a dynamic programming
algorithm. Altay et al. [1], considered a class of knapsack problems that
included setup costs for families of items. A mixed integer program-
ming formulation for the problem was provided along with exact and
heuristic solution methods. The computational performances of the
algorithms were reported and compared with CPLEX. Michel et al. [21]
considered multiple-class integer knapsack problemwith setups. Their
paper provides a review of the literature on knapsack problems with
setups, discusses various reformulations, and presents specialized
branch-and-bound procedures extending the standard algorithm for
the knapsack problem. Sang and Sang [24], proposed a new memetic
algorithm for the quadratic multiple container packing problem. The
proposed memetic algorithm is based on the adaptive link adjustment
evolutionary algorithm (ALA-EA) and it incorporates heuristic fitness
improvement schemes into the ALA-EA. Wang et al. [29], provided a
comparison of quadratic and linear representations of the QKP based
on test problems with multiple knapsack constraints and up to eight
hundred variables. In addition to the setup constraints, there may be
other important conditions such as the knapsack preference of
the items.

In this study, the QMKP with setups is generalized by consider-
ing the knapsack preferences of the items and is called the
Generalized Quadratic Multiple Knapsack Problem (G-QMKP).
It appears to be, it is the first study on generalized quadratic
multiple knapsack problems in the literature.

KP that are combinatorial optimization problems belong to the
class of NP-hard type problems [18]. Both the QMKP and the
G-QMKP are NP-hard by restriction to KP; even if all the quadratic
values pij are set equal to zero and the number of knapsacks equal
one. Since solving the G-QMKP is not easy, an efficient search
heuristic approach will be useful for solving this problem.

Genetic algorithms are powerful and broadly applicable in sto-
chastic search and optimization techniques based on principles from
evolution theory [11]. GAs, which differ from normal optimization

and search procedures: (a) work with a coding of the parameter set,
not the parameters themselves; (b) search from a population of
points, not a single point; (c) use payoff (objective function)
information, not derivatives or other auxiliary information; and
(d) use probabilistic transition rules, not deterministic rules [12].
Due to these characteristics, use of the GA in numerous fields has
been rapidly increasing in the recent years. The GA has also been
successfully implemented in the QKP [15] and the QMKP [13,25,26]
problems. Another solution method that comes into prominence
with its success in solving integer nonlinear problems in recent years
[27] is based on the Modified Subgradient (MSG) algorithm. The MSG
algorithm was proposed by Gasimov [9] for solving dual problems
constructed in respect to a sharp augmented Lagrangean function.
If the problem is not convex, using classical Lagrangean based
solution methods may lead to a non-zero duality gap. To eliminate
this problem, a sharp augmented Lagrangean function is used to
construct the dual problem in the MSG algorithm. It is proven that,
when the objective and constraint functions are all Lipschitz, then
the sharp augmented Lagrangean guarantees the zero duality gap [9].
The MSG algorithm also has some outstanding properties. For
example, the MSG algorithm is convergent and does not require
any convexity or differentiability conditions on the primal problem.
Furthermore, it does not use any penalty parameters, and guarantees
the strict increment of dual values at each iteration. Nevertheless, the
MSG algorithm also has some disadvantages. It is necessary to find
the global optimum of the unconstraint problem at every iteration
and uses an upper limit for updating step size parameters. To cope
with these problems, the F-MSG algorithm was introduced by [16].
The F-MSG algorithm was used to solve the Quadratic Assignment
Problem (QAP) and very good results were obtained [10]. However,
the performance of the F-MSG algorithm still depends on the
performance of the solution method used for solving the sub
problem at any iteration.

In this study, firstly a mathematical model for the G-QMKP is
developed and then two different meta-heuristic solution approaches
are proposed to solve it. The first method is a genetic algorithm based
solution approach and the second method is a hybrid solution
approach, which combines the F-MSG (modified subgradient algo-
rithm based on feasible values) and a genetic algorithm for solving the
sub problem. Additionally, the success of the proposed methods is
shown and compared with the results obtained using the Gams/
Dicopt solver on randomly generated test instances. Finally, a case
study is realized on a plastic injection molding company as an
implementation of the proposed approaches. In this implementation,
a large scale real world problem is solved, and it is shown that the
proposed hybrid solution approach can be used successfully for
assigning jobs to machines in plastic injection production. Moreover,
good solutions can be obtained in a reasonable time for a large scale
real-life problem.

The organization of this paper is as follows. The second section
gives a mathematical model for the G-QMKP. The third section
describes the proposed solution methods for both the genetic
algorithm and the hybrid algorithm, in detail. Computational
results are presented in Section 4. A case study is given in
Section 5 and, finally, the conclusions are outlined in Section 6.

2. Mathematical model of the generalized quadratic multi
knapsack problem

The mathematical model of the Quadratic Multiple Knapsack
Problem is as follows:
Index sets:

J¼{j|j¼1,…,n} index set of items
K¼{k|k¼1,…,m} index set of knapsacks
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