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a b s t r a c t

In this paper we analyze the behavior of a quite standard Differential Evolution (DE) algorithm applied to
the objective function transformed by means of local searches. First some surprising results are
presented which concern the application of this method to standard test functions.

Later we introduce an application to disk- and to sphere-packing problems, two well known and
particularly hard global optimization problems. For these problems some more refined variations of the
basic method are necessary in order to take at least partially into considerations the many symmetries
those problems possess. Coupling these techniques with DE and local optimization resulted in a new
method which, when tested on moderately sized packing problems, was capable of confirming known
putative optima for the problem of packing disks, and of discovering quite a significant number of new
putative optima for the problem of packing spheres.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction and problem statement

Differential Evolution (DE) is a very simple population-based
global optimization algorithm. If we denote by f : Rn-R the
objective function of the problem, the original DE method (see
[1]), can be described as in Algorithm 1, where:

� UðSÞ represents a uniform random number generator in the set
S;

� p is the population size;
� fx1;…; xpg �Rn is the population;
� xðjÞi denotes the j-th element of vector xiARn.

The idea of the algorithm can be easily seen within the context
of genetic algorithms:

� the algorithm maintains and evolves a whole population of
solutions;

� a sort of crossover can be performed (if CR40), where a new
individual is formed by substituting some of its components
with a linear combination of three other members in the
population;

� population overall improvement is implemented through an
acceptance criterion by which a new trial solution is accepted

and replaces a current individual if the associated function
value improves.

The method reported in Algorithm 1 is one of the possible
variants of DE; different implementations of the basic scheme can
be identified thanks to a simple taxonomy which takes the form of
DE=x=y=z. Here x, which takes the values rand or best, represents
the criterion by which the solution to be perturbed is chosen
(a solution chosen at random using a uniform distribution, or the
current best member of the population). The second field, y, stands
for the number of difference vectors used in the perturbation of x,
where a difference vector is the difference between two distinct
randomly selected elements in the population. Finally, z identifies
the crossover operator—its value represents the discrete pro-
bability distribution used to generate the individuals which
participate to the crossover; its value can be bin indicating that
the choice is made following a, binomial probability distribution
function, as in the scheme reported in Algorithm 1, or exp when
the choice on which components to keep from the current
population is based on an exponential distribution. The strategy
outlined in Algorithm 1 can be classified as DE/rand/1/bin. We
refer to the existing literature for a description of its many variants
(see, in particular, [2]).

Algorithm 1. Differential evolution.

Data: FA ð0;2Þ, a real constant; CRA ½0;1�, a probability
threshold
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for each iA1;…; p do
let ı≔Uð1;…;nÞ;
randomly choose k1; k2; k3Af1;…; pg\fig; all different;
let Trial≔xk1 þFðxk2 �xk3 Þ;
for jA1;…;n : ja ı do

if Uð0;1ÞoCR then

j let TrialðjÞ≔xðjÞi ;

end

�������
end
if f ðTrialÞo f ðxiÞ then
j let xi≔Trial;

end

���������������������������
end

The theoretical aspects of DE have received only moderate
attention in the literature. In [3], under mild conditions, conver-
gence of the whole population to a single point is proven for
strictly convex objective functions, although such point is not
guaranteed to be the local (global) minimizer. In fact, for more
general functions some phenomena may occur, like, e.g., the
population collapsing to a single point or a frozen population
(due to the finite number of possible moves, none of them might
be improving with respect to the current members of the popula-
tion), which prevent further progress of the population and thus
the convergence to a global minimizer (see, e.g., [4,5]).

Despite this lack of theoretical support, the practical behavior
of the method is quite interesting and the algorithm is used in a
very large number of cases.

As it is common in many global optimization heuristics (see,
e.g., [6]), the algorithm switches from an initial, exploratory, phase
to a local refinement one where members of the population group
together. While this behavior is needed in most good heuristics,
it should be recalled that, when it comes to local refinement, it is
usually much more efficient to base the search on standard local
optimization methods, instead of performing local steps without
exploiting the power of local descent methods.

In this paper we first explore a quite simple modification of the
basic DE scheme, following the approach which, in combinatorial
optimization, goes under the name of memetic: in Algorithm 1, each
time the evaluation of the objective function f is required, we instead
perform a local descent by means of a local optimization method L
which, given an objective function f and a starting point x returns
x ¼Lðf ; xÞARn, a local minimizer for f where f ðxÞr f ðxÞ for all x in a
neighborhood of x. To be more precise, local optimizationmethods are
often only guaranteed to return a stationary point, which is not
necessarily a local minimizer. Since the following discussion is not
affected by that, inwhat follows wewill always assume, for the sake of
simplicity, that the point returned by a local optimization method is a
local minimizer. Note that memetic algorithms proved to be efficient
ones as testified, e.g., by the fact that a memetic algorithm (see [7])
won the CEC competition 2010 in large scale global optimization (see
http://sci2s.ugr.es/eamhco/cec2010_functions.pdf). The basic algorithm
is transformed as represented in Algorithm 2 (MDE).

Although in this algorithm only a single line is changed with
respect to Algorithm 1, the overall behavior of the whole method
radically changes, as it transforms a continuous, derivative free,
method like DE into a combinatorial search in the space of local
minima—we remark here that in this implementation all members
xi in the population are local optima of the objective function.

Algorithm 2. Memetic differential evolution (MDE).

Data: FAð0;2Þ, a real constant; CRA ½0;1�, a probability
threshold

for each iA1;…; p do
let ı≔Uð1;…;nÞ;
randomly choose k1; k2; k3Af1;…; pg\fig; all different;
let Trial≔xk1 þFðxk2 �xk3 Þ;
for jA1;…;n : ja ı do

if Uð0;1ÞoCR then

j let TrialðjÞ≔xðjÞi ;

end

�������
end
let Trial≔Lðf ; TrialÞ;
if f ðTrialÞo f ðxiÞ then

j let xi≔Trial;

end

������������������������������
end

The original contribution in this paper can be found in two
aspects:

� first, we analyze in a quite systematic way the behavior of
Algorithm 2 when applied to quite standard test functions and
we comment on the somewhat surprising results (not pre-
viously observed in the literature, to the authors' knowledge),
for which we give some (tentative) explanations;

� then, after introducing some specific modifications, we show
how the method can be applied, with quite unexpected good
results, on classical problems of packing disks in a square or
spheres in a cube.

The results obtained and described in this paper are, in our
opinion, interesting and further research will be surely needed in
order to fully understand the capabilities of this method.

The paper is structured as follows. In Section 2 we shortly
describe Monotonic Basin Hopping (MBH), a simple but efficient
global optimization approach based on local searches, which
represents a quite natural basis for comparison for MDE. In
Section 3 we describe and interpret some computational experi-
ments with MBH and a basic version of MDE on standard global
optimization functions and some, more challenging, variants of
these functions. In Section 4 we describe some experiments with
MDE on packing problems. For these problems variations of the
basic MDE method are required in order to take at least partially
into consideration the many symmetries those problems possess
and, thus, the many equivalent solutions existing for this kind of
problems. Finally, in Section 5 we draw some conclusions.

2. A short introduction to Monotonic Basin Hopping

In order to evaluate the behavior of the proposed algorithm, we
compared its performance with a standard global optimization
algorithm, Monotonic Basin Hopping, MBH (see, e.g., [6,8,9]),
whose general scheme is reported in Algorithm 3. This algorithm
is strongly based on the application of local searches. It is an
Iterated Local Search method in the space of local optima.

It consists in repeatedly performing a local optimization from a
point which is randomly, uniformly, generated in a prescribed
neighborhood of the current iterate. Here we choose, as a neighbor-
hood, Dðx;ΔÞ, the hypercube centered at x with edge length equal
to 2Δ , but other choices for the shape of the neighborhood, like, e.
g., hyperrectangles, spheres or ellipsoids, are possible.

Algorithm 3. Basin Hopping Method.

while GlobalStoppingRule is false do
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