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a b s t r a c t

A multi-server retrial queue with two types of calls (handover and new calls) is analyzed. This queue
models the operation of a cell of a mobile communication network. Calls of two types arrive at the
system according to the Marked Markovian Arrival Process. Service times of both types of the calls are
exponentially distributed with different service rates. Handover calls have priority over new calls.
Priority is provided by means of reservation of several servers of the system exclusively for service of
handover calls. A handover call is dropped and leaves the system if all servers are busy at the arrival
epoch. A new call is blocked if all servers available to new calls are busy. Such a call has options to balk (to
leave the system without getting the service) or to retry later on. The behavior of the system is described
by the four-dimensional Markov chain belonging to the class of the asymptotically quasi-Toeplitz Markov
chains (AQTMC). In the paper, a constructive ergodicity condition for this chain is derived and the
effective algorithm for computing the stationary distribution is presented. Based on this distribution,
formulas for various performance measures of the system are obtained. Results of numerical experiments
illustrating the behavior of key performance measures of the system depending on the number of the
reserved servers under the different shares of the handover and the new calls are presented. An
optimization problem is considered and high positive effect of server's reservation is demonstrated.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of the problem of optimal handling both
handover and new calls in a cell of a wireless network is well-
recognized. The limited bandwidth of a target cell and competition
between the calls may create essential problems, especially for the
moving users. When an active mobile user enters the target cell
moving from the adjoining cell, his/her communication can be
terminated due to lack of free channels. The requests of such on-
going (handover) calls compete with the requests of the calls
originated in the target cell (new calls).

From user's perspective, it is more intolerable to drop an on-
going service than to block a service that has yet to be established.
Therefore, with limited bandwidth in a cell, satisfying requests of
on-going (handover) calls is more important than satisfying
requests of new calls generating in the cell.

To provide some kind of priority to handover calls over the new
ones, different policies are elaborated. The well-known policy is a
so-called Guard Channel Policy, see, e.g., [11]. This policy assumes

the reservation of some part of servers (channels) exclusively for
the service of handover calls. Let the total number of channels in the
target cell be equal to K. Under the Guard Channel Policy, some
number R;RoK , of channels is reserved for the service of handover
calls only. A new call is accepted for service only if the number of
busy servers at the arrival moment is less than N¼ K�R. Naturally,
the problem of optimal choice of the number R of the reserved
channels arises. As a criterion for the quality of optimization, a cost
function can be considered. This function should account for
probabilities of the handover call loss (sometimes referred to as a
dropping probability), the new call loss (blocking probability), and
the utilization of bandwidth of the cell. As a result, under the fixed
values of charges for the loss of calls and for under-utilization of
bandwidth, the optimal value Rn of the number of servers reserved
exclusively for the service of handover calls should be found.

There is a lot of works where such type of optimization
problem is considered. Some of them are cited in [16] and in the
papers mentioned therein. Advantage of the work [16] over the
previous papers is the exact mathematical analysis of the model
with taking into consideration different service rates for handover
and new calls. Shortcomings of the model considered in [16] are as
follows:

(i) handover and new calls arrive in the independent stationary
Poisson flows. This assumption contradicts the fact that traffic in
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the modern wireless mobile communication networks exhibits
correlation and high variability of inter-arrival times;

(ii) a blocked new call does not repeat the attempts to get
service and leaves the system forever. Under such assumption, the
effect of retrials is ignored.

In the model under study, the correlation and the variability of
inter-arrival times in the input flow of the heterogeneous calls are
taken into account via the consideration of the Marked Markovian
Arrival Process (MMAP). We also take into account the retrial
phenomenon assuming that a blocked new call enters the orbit
of an infinite size and repeats its attempts to reach a server in a
random amount of time independent of the other orbital calls.
Thus, in this paper we consider a multi-server retrial queue with
two types of calls arriving according to a MMAP. Note that the
MMAP is a generalization of the well-known, see, e.g., [5,17],
Markovian Arrival Process (MAP) to the case of heterogeneous calls.
State of the art in analysis of the retrial queues with homogeneous
calls arriving according to MAPs and BMAPs – Batch Markovian
Arrival Processes can be found in [2,10].

The closest to our model are the models considered in papers
[1,6–8,20].

In [6], a multi-server queueing model with independent MAPs
of handover and new calls is considered. In case when all servers
are busy at an arrival time, the handover call joins a buffer of an
infinite capacity while the new call moves to the orbit of a finite
capacity and retries for service later on. No reservation of servers
for handover calls is suggested in [6].

In the paper [1], the authors consider quite general model. They
assume that service and inter-retrial times have a so-called phase
type (PH) distribution which is much more general compared to
exponential distributions suggested in our paper. Disadvantage of
the paper [1] consists of the following. From the mathematical
point of view, the main difficulty of the analysis of a retrial queue
is due to infinite orbit size and state inhomogeneous behavior of
the multi-dimensional Markov chain describing the operation of
the system. The authors of [1] overcome this difficulty by cutting
capacity of the orbit. Namely this suggestion allows the authors of
[1] to incorporate an assumption about the PH distribution of
inter-retrial time. Although this suggestion greatly simplifies the
mathematical analysis of the model, it reduces adequacy of the
model to real life. Due to the mobility of the users, it is hardly
possible to cut the possible number of users in a given cell by a
finite number, which should be fairly small to guarantee the
feasibility of the computational algorithm offered in [1].

A very close to the model analyzed in [1] is the retrial queueing
system considered in the recent paper [20]. But, in order to
simplify the mathematical analysis of the model, the authors of
this paper assume constant retrial rate from the orbit. We assume
that the retrial rate depends on the number of calls in the orbit
that is obviously true in real life.

The paper [7] deals with a queueing system, which is a special
case of our queue, under the following assumptions: (a) arrival
flows of handover and new calls are defined as stationary Poisson
ones; (b) service times of handover and new calls are identically
distributed. It is clear that both assumptions simplify the model to
the detriment of its adequacy. The system has been analyzed by
means of the approximate phase merging algorithm.

In the paper [8], the author analyzes a model similar to the model
studied in [7]. The inessential difference is that the author that a
dropped handover call will retry later on while in [7] it is assumed
that such a call is lost. The significant disadvantage of the model
presented in [8] compared to the model in [7] is that it is assumed
there, as well as in [20], that the flow of retrials from the orbit has a
constant rate independent of the number of calls in the orbit. As it
has already been noted above, this assumption facilitates the
mathematical analysis while it is hardly practically motivated.

The advantages of our analysis compared to the results given in
paper [7] are two-fold: we consider more general queueing model
(more general arrival process and different service rates of hand-
over and new calls) and provide the exact mathematical analysis.

Notably, none of the papers on the subject present ergodicity
condition for the model with infinite capacity of the orbit and
independent retrials of the calls from the orbit. We derive such a
condition. This condition has an analytically tractable form, which,
however, was not apparent at first sight.

It should be mentioned that our analysis is implemented under
suggestion that the parameters of the arrival process and service
times are known. Sure, an application of the obtained results for
investigation of some practical system can be done only after
evaluation of these parameters in this concrete system. The
problem of fitting real life flows by the MMAP is well known in
literature, see, e.g., [4]. Concerning evaluation of the service time
parameters, see, e.g., paper [1] where some way for defining
service times of handover and new calls via the holding and
residence times (and their residuals) is presented.

Note that extension of the presented analysis to the case of the
PH type distribution of service times is possible by analogy with
[3] or [13]. However, we restrict ourselves in this paper by the
exponential distribution taking into account both difficulty in
fitting the parameters and essential reduction of the dimension
of the process under study in exponential case what is very
important on the stage of computer implementation.

The rest of the paper is organized as follows. In Section 2, the
queueing system under consideration is defined. In Section 3, the
multi-dimensional continuous time Markov chain, which describes
the behavior of this system, is constructed. The generator of this chain
is presented and the fact that this Markov chain belongs to the class
of the asymptotically quasi-Toeplitz Markov chains is proved. In
Section 4, the stability condition of this Markov chain is derived and
justified intuitively. The algorithm for computing the stationary
probabilities is outlined. In Section 5, formulas for some key perfor-
mance measures of the system are derived and an optimiza-
tion problem is formulated. Numerical examples are presented in
Section 6. Section 7 concludes the paper.

2. Mathematical model

The structure of the system under study is presented in Fig. 1.

Fig. 1. Structure of the system.

C. Kim et al. / Computers & Operations Research 43 (2014) 181–190182



Download English Version:

https://daneshyari.com/en/article/474664

Download Persian Version:

https://daneshyari.com/article/474664

Daneshyari.com

https://daneshyari.com/en/article/474664
https://daneshyari.com/article/474664
https://daneshyari.com

