
Reducing the solution space of optimal task scheduling

Oliver Sinnen
Department of Electrical and Computer Engineering, University of Auckland, New Zealand

a r t i c l e i n f o

Available online 18 October 2013

Keywords:
Parallel computing
Task scheduling
An

State space pruning

a b s t r a c t

Many scheduling problems are tackled by heuristics due to their NP-hard nature. Task scheduling with
communication delays (Pjprec; cijjCmax) is no exception. Nevertheless, it can be of significant advantage to
have optimal schedules, e.g. for time critical systems or as a baseline to evaluate heuristics. A promising
approach to optimal task scheduling with communication delays for small problems is the use of
exhaustive search techniques such as An. An is a best first search algorithm guided by a cost function.
While good cost functions reduce the search space, early results have shown that problem specific
pruning techniques are paramount. This paper proposes two novel pruning techniques that significantly
reduce the search space for Pjprec; cijjCmax. The pruning techniques Fixed Task Order and Equivalent
Schedules are carefully investigated based on observations made with simple graph structures such as
fork, join and fork–join, yet they are generally applicable. An extensive experimental evaluation of
computing more than two thousand schedules demonstrates the efficiency of the novel pruning
techniques in significantly reducing the solution space.

& 2013 Published by Elsevier Ltd.

1. Introduction

Scheduling is an essential and crucial part of parallel comput-
ing. In the scheduling problem addressed in this paper, a set of
tasks with precedence constraints and communication delays,
represented by a task graph, is to be scheduled on a set of identical
processors in such a way that the schedule length, or makespan, is
minimised. This problem is a classical scheduling problem and
written as Pjprec; cijjCmax in the αjβjγ notation [7,28]. It is well
known that this problem is NP-hard in the strong sense [19].
The only known guaranteed approximation algorithm [11] has an
approximation factor depending on communication costs of the
longest path in the schedule [6]. Many heuristics have been proposed
for this classical problem, even quite recently [2,12–14,16,26].

Despite the NP-hardness of the problem, it can be of significant
advantage to have an optimal schedule in certain situations. This
can be the case for very time critical systems or for application
areas where a schedule is reused many times, e.g. in an embedded
system or where the schedule is enclosed by a loop. Moreover,
having optimal solutions for scheduling instances allows to better
judge the quality of heuristics and thereby to gain insights into
their behaviour. The lack of good guaranteed approximation
algorithms makes this very relevant.

The work presented in this paper addresses the optimal
solution of the Pjprec; cijjCmax scheduling problem. A task graph
represents the program to be scheduled, where the nodes represent

the tasks and the edges represent the communications among
them. Weights represent computation and communication costs.
The scheduling problem is the assignment of a processor and a
start time to each task, in such a way that the schedule length is
minimised. It is trivial to show that this is equivalent to finding a
processor allocation and an ordering of the tasks [23]: the tasks
just need to start as early as possible adhering to all constraints.
In other words, our scheduling problem is a combinatorial opti-
misation problem. Such problems have been widely addressed
with two different optimisation techniques: (i) Mixed Integer
Linear Programming (MILP) and (ii) smartly enumerating all
feasible solutions, e.g. using a branch-and-bound algorithm.

For our scheduling problem, there have been surprisingly few
attempts at solving it optimally. Scheduling problems often have a
weak LP relaxation (i.e. the problem without the integer con-
straint, which is solvable in polynomial time), which leads to long
runtimes of MILP solvers. Further, with the communication costs
in the scheduling model and the fact that local communication is
cost free, it is non-trivial to formulate an efficient MILP for our
problem. Examples of MILP formulations are [1] and more recently
[3,4]. In [4], the communication cost leads to bilinear constraints
which have to be linearised, significantly reducing the efficiency of
such an approach. Sometimes the MILP approach is used to design
an efficient heuristic for the scheduling problem [9].

In this paper we will look at the second technique of enumer-
ating all feasible solutions. For a task graph with jVj tasks
scheduled on jPj processors, the solution space is spawned by all
possible orderings of the tasks (jVj!) times all possible processor
allocations jPjjVj. It is clear that the exploration of the solution

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.cor.2013.09.004

E-mail address: o.sinnen@auckland.ac.nz

Computers & Operations Research 43 (2014) 201–214

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.09.004
http://dx.doi.org/10.1016/j.cor.2013.09.004
http://dx.doi.org/10.1016/j.cor.2013.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.004&domain=pdf
mailto:o.sinnen@auckland.ac.nz
http://dx.doi.org/10.1016/j.cor.2013.09.004
http://dx.doi.org/10.1016/j.cor.2013.09.004

space must be done very intelligently if we want to go beyond half
a dozen of tasks and two processors. An is a best-first search technique
that can be applied to such solution space exploration [5]. In contrast
to typical branch-and-bound algorithms [18], it does not follow a
depth-first search, but always expands the state in the search
space that looks most promising. In other words, An uses a priority
queue for states to expand, while branch-and-bound usually uses a
LIFO (Last In First Out) queue. This comes at the cost of much
higher memory consumption, but An has the nice property that it
will traverse the least number of states for a given cost estimation
heuristic, compared to other exploration techniques [20]. In [22],
we proposed an An based scheduling algorithm, which was
inspired by an earlier attempt [15,17].

From these earlier results, we gained two important insights.
First, pruning techniques play a paramount role to reduce the
search space, even with good An cost estimate functions. Second,
the performance of the An based scheduling algorithm is very
dependent on the structure and density of the task graph. Para-
doxically, very simple graph structures like fork and join were
more difficult to schedule, i.e. it took longer to find the optimal
solution for the same number of tasks than more complex and
dense structures like pipeline or stencil. The problem is that the
simpler structures have more degrees of freedom and hence have
a larger solution space.

The contribution of this paper is the proposal of new pruning
techniques to significantly reduce the solution space of the
Pjprec; cijjCmax scheduling problem. The two major techniques
are Fixed Task Order pruning and Equivalent Schedule pruning.
Both techniques are developed from observations made about the
scheduling of simple task graph structures, namely independent
tasks, fork graphs, join graphs and fork–join graphs. The techni-
ques are investigated based on our An scheduling algorithm, but
the concepts and methods can be applicable to other exhaustive
search techniques. They possibly extent to metaheuristics such as
Genetic Algorithms [32,29], by reducing the search space on which
the metaheuristic operators work. A further pruning technique
proposed is the extended utilisation of schedules produced by
heuristics, which can prune the solution space significantly under
certain conditions.

This paper also contributes an extensive evaluation computing
more than two thousand schedules. Scheduling task graphs optimally
with the novel techniques demonstrates that we achieved our goal of
significantly reducing the search space. The novel pruning techni-
ques are especially successful for those graph structures that were
most difficult to schedule before, which are fork, join, fork–join
and trees.

Section 2 continues this paper with the background and definition
of the scheduling problem, presenting the basic An scheduling algo-
rithm and discussing its cost estimate function f. Existing pruning
techniques are reviewed in Section 3, leading to the proposal of the
new pruning techniques in Sections 3.4, 4 and 5. They are evaluated in
Section 6 and the paper concludes with Section 7.

2. Background

The problem to be addressed in this work is the scheduling of a
Directed Acyclic Graph (DAG), called task graph, G¼ ðV;E;w; cÞ on
a set of processors P. Each node nAV represents a non-divisible
sequential task of the program modelled by the task graph. An
edge eijAE represents the communication from task ni to task nj.
The positive weight w(n) of task nAV represents its computation
cost and the non-negative weight cðeijÞ of edge eijAE represents its
communication cost. Fig. 1 depicts a sample task graph with
4 tasks; weights are displayed besides the tasks and edges. The
set fnxAV : exiAEg of all direct predecessors (parents) of ni is

denoted by parentsðniÞ and the set fnxAV : eixAEg of all direct
successors (children) of ni is denoted by childrenðniÞ. A task nAV
without parents, parentsðnÞ ¼∅, is named source task and if it is
without children, childrenðnÞ ¼∅, it is named sink task.

The target parallel system consists of a finite set of dedicated
processors P (there is no preemption of an executing task)
connected by a communication network. It has the following
properties: (i) local communication has zero cost; (ii) communication
is performed by a communication subsystem; (iii) communication can
be performed concurrently; and (iv) the communication network is
fully connected. This system model and its idealising assumptions
are sometimes referred to as the classic model [23], as opposed to
more advanced models that consider communication contention
[24,25].

Scheduling this task graph G on the processors P is the assign-
ment of a processor allocation proc(n) and a start time ts(n) to each
task. The node's finish time is given by tf ðnÞ ¼ tsðnÞþwðnÞ, i.e. the
task's start time plus its computation costs, as homogeneous
processors are assumed in this work. Let tf ðPÞ ¼maxnAV:procðnÞ ¼
Pftf ðnÞg be the processor finish time of P and let slðSÞ ¼
maxnAVftf ðnÞg be the schedule length (or makespan) of schedule
S, assuming minnAVftsðnÞg ¼ 0.

For such a schedule to be feasible, the following two conditions
must be fulfilled for all tasks in G. The Processor Constraint enforces
that only one task is executed by a processor at any point in time,
which means for any two tasks ni, njAV

procðniÞ ¼ procðnjÞ)
tf ðniÞrtsðnjÞ

or tf ðnjÞrtsðniÞ

(
:

The Precedence Constraint enforces that for every edge eijAE,
ni;njAV, the destination task nj can only start after the commu-
nication associated with eij has arrived at nj's processor Pdst,

tsðnjÞZtf ðniÞþ
0 if procðniÞ ¼ procðnjÞ
cðeijÞ otherwise

(
:

Considering all parents, nj's start time on processor P is con-
strained by the so-called Data Ready Time (DRT) tdrðnj; PÞ. This is
the time, when all communications from nj's predecessors have
arrived at P, given as

tdrðnj; PÞ ¼ max
ni AparentsðnjÞ

tf ðniÞþ
0 if procðniÞ ¼ P

cðeijÞ otherwise

(()
ð1Þ

If nj is a source task then tdrðnj; PÞ ¼ 0.

Fig. 1. Graph with four tasks.

O. Sinnen / Computers & Operations Research 43 (2014) 201–214202

Download	English	Version:

https://daneshyari.com/en/article/474666

Download	Persian	Version:

https://daneshyari.com/article/474666

Daneshyari.com

https://daneshyari.com/en/article/474666
https://daneshyari.com/article/474666
https://daneshyari.com/

