
A better online algorithm for the parallel machine scheduling
to minimize the total weighted completion time$

Jiping Tao n

Department of Automation, Xiamen University, Xiamen 361005, China

a r t i c l e i n f o

Available online 7 October 2013

Keywords:
Online scheduling
Parallel machine
Competitive ratio
Total weighted completion time
Instance reduction

a b s t r a c t

The identical parallel machine scheduling problem with the objective of minimizing total weighted
completion time is considered in the online setting where jobs arrive over time. An online algorithm is
proposed and is proven to be (2.5–1/2m)-competitive based on the idea of instances reduction. Further
computational experiments show the superiority over other algorithms in the average performance.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the online setting, parallel machines scheduling problem has
been paid much attention [1–4]. In this work, we consider the
classical online scheduling over identical parallel machines with the
objective of minimizing the total weighted completion time.
Formally, there is a sequence of jobs arriving over time and must
be scheduled on m identical machines without preemption allowed.
Each job Jj is characterized by a release date rj, a processing time pj
and a weight wj. All the information about one job is not revealed
until it is released. Also the total number n of jobs cannot be known
in advance. The goal is to find a schedule that minimizes the total
weighted completion time, ∑wjCj, where Cj is the completion time
of job Jj. The problem can be denoted by Pmjrj; onlinej∑wjCj in terms
of the standard three-field notation for scheduling problems in [5].

An online algorithm is often assessed by its competitive
performance. An algorithm is called ρ-competitive if, for any instance,
the objective function value of the schedule generated from
this algorithm is no worse than ρ times the objective value of
the optimal offline schedule [6].

For the case of m¼1, the problem degenerates into a single
machine problem. For this problem, it is well known that the optimal
deterministic online algorithm is presented with the competitive
ratio of 2 in [7]. For the case of multiple machines, the first
deterministic online algorithm is given by Hall et al. [8]. They design
a ð4þɛÞ -competitive online algorithm, where ɛ is an arbitrarily small
positive constant. The result is improved to a value of 3.28 by using

the technique of shifting releasing times [9]. To the best of our
knowledge, the current best deterministic online algorithm is given
by Correa and Wagner [1]. They propose a 2.618-competitive algo-
rithm based on linear programming relaxation techniques and the
concept of α-point. In a recent study [2], Sitters designs an online

algorithm named by ONLINE(ε) by using the technique of shifting

releasing times. He proves that the competitive ratio of ONLINE(ε) is
not greater than ð1þ1=

ffiffiffiffiffi
m

p Þ2ð3e�2Þ=ð2e�2Þ, which is much greater
than the current best value of 2.618 in [1] for less machine number,
although which tends to 1.79 when the machine number m tends to
infinity. When randomization is allowed, better competitive algo-
rithms have been proposed. Detailed results can be found in [1,10,11].

In this work, we only consider the deterministic setting.
By generalizing the algorithm for the single machine problem in [7],
we propose an online algorithm for Pmjrj; onlinej∑wjCj and prove
that it is (2:5�1=2m)-competitive. The competitive analysis is
based on the idea of instance reduction, which is first introduced
for two semi-online single scheduling problems in [12,13]. In general,
the method is in an attempt to directly search for the worst-case
instance in the instance space. It starts from an arbitrary instance
and modifies the instance such that it possesses the possible
structure of the worst-case one with respect to the given online
algorithm. The modification guarantees that the performance ratio
does not decrease. Eventually, the reduction procedure ends up
with one or several types of relatively simple instances with special
structures. These special structures make it possible to analyze the
performance ratios. Thus an upper bound on the competitive ratio
can be derived.

The remaining sections are organized as follows. In Section 2,
the online algorithm is presented. Its competitive performance is
analyzed in Section 3. Computational experiments are shown in
Section 4. Conclusions and remarks are given in Section 5.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.09.016

☆This work is supported by the National Science Foundation of China
(No. 11201391).

n Tel.: þ86 18205992171.
E-mail address: jipingtao@gmail.com

Computers & Operations Research 43 (2014) 215–224

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.09.016
http://dx.doi.org/10.1016/j.cor.2013.09.016
http://dx.doi.org/10.1016/j.cor.2013.09.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2013.09.016&domain=pdf
mailto:jipingtao@gmail.com
http://dx.doi.org/10.1016/j.cor.2013.09.016
http://dx.doi.org/10.1016/j.cor.2013.09.016


2. The AD-SWPT online algorithm

It is well known that the delayed shortest weighted processing
time (D-SWPT) rule proposed by Anderson and Potts [7] is an
optimal online algorithm for the single machine problem to
minimize the total weighted completion time. Actually, D-SWPT
can be regarded as a generalization of the delay shortest proces-
sing time rule proposed in [14] for the case of identical weights.

Inspired by the same idea in both [14] and [7], we further
generalize the D-SWPT rule in [7] and construct an online algorithm
for the parallel machine problem. Informally, when there are some
idle machines and unscheduled jobs, we choose the job with the
smallest ratio of the processing time to the weight as the candidate for
processing. We also choose the current time as the comparison
reference to determine whether the selected candidate is immediately
scheduled or not. Differently, we not only consider the candidate as in
the single machine case, but also take all the jobs being processed at
other machines into account. Quantitatively, we compare the current
time with the average remaining processing time over all the
machines to make a decision of processing. We call the proposed rule
the average delayed shortest weighted processing time rule. It is
thereafter abbreviated to AD-SWPT, which is described in detail as
follows with some notations listed in Table 1.

Algorithm AD-SWPT: Whenever there is one idle machine and
some jobs are available, choose a job with the smallest value of the
ratio pj=wj (hereafter we use weighted processing time to refer to
the ratio) among all the arrived and unscheduled jobs. When ties
occur, choose the one with the smallest index. For example, Ji is
chosen. Calculate the total remaining processing time at all the
busy machines at time t. The value can be written as ∑Sj r t p̂jðtÞ
according to the notations in Table 1. Then if

piþ∑Sj r t p̂jðtÞ
m

rt; ð1Þ

we schedule Ji from t at the idle machine; otherwise, wait until the
next time and repeat the whole procedure above.

At the first glance, it can be readily found out that AD-SWPT is
reduced to the D-SWPT rule in [7] for the case of single machine.
Such a reduction implies that AD-SWPT is optimal for the single
machine case. For the case of multiple machines, we will show
that AD-SWPT performs better in the worst case than the best
algorithm in the related literature. The result is given in the
following theorem and will be proved in the next section.

Theorem 1. The competitive ratio of the AD-SWPT algorithm lies in
the interval of ½2;2:5�1=2m� for the online scheduling problem
of Pmjrj; onlinej∑wjCj.

3. Competitive analysis of the AD-SWPT algorithm

Although the AD-SWPT algorithm can be regarded as a direct
and even intuitive extension from D-SWPT in [7] for the single
machine problem, it seems difficult to follow the proof techniques
in [7] to analyze the competitive performance of AD-SWPT. In this
work, we develop a competitive analysis method based on the idea
of instance reduction, which is first introduced for two semi-
online single scheduling problems in [12,13]. Although the com-
petitive ratio is defined as the maximal performance ratio
achieved in the set of all the instances, an exhaustive search is
infeasible since the set includes infinite number of instances.
The idea of instance reduction is in an attempt to reduce the
search space by showing that some instances cannot achieve
greater performance ratios than other instances do. Thus we can
analyze the worst-case performance in smaller sets. The key point
is that the smaller sets are composed of some instances with some
types of special structures, which permit further analysis of
performance ratios.

For the AD-SWPT rule proposed in Section 2, we first show that
the worst-case instances can be achieved among two types of
instance sets. For each instance in the first set, each job is
associated with the same weighted processing time. For each
instance in the other set, there are some jobs with weights tending
to positive infinity. For the two types of instances, we further
prove that their performance ratios are not greater than 2.5–1/2m.

3.1. Structure of the AD-SWPT schedule

The AD-SWPT schedule includes some idle time intervals at
some machines due to the waiting strategy of AD-SWPT. For the
convenience of presentation, let us state that one machine is “idle”
at the time t if the machine remains idle during the interval of
ðt�ɛ; tþɛÞ, and that one machine is “busy” at the time t if it is busy
during the interval of ðt�ɛ; tþɛÞ, where ɛ is an infinitely small
positive number. In order to differentiate the switching time
points between the busy and idle states, we further state that the
time t is a “starting point of busy time” (abbreviated to SPoint) at
one machine if the machine remains idle in ðt�ɛ; tÞ and busy in
ðt; tþɛÞ, and that the time t is an “ending point of busy time”
(EPoint) at one machine if the machine is busy in ðt�ɛ; tÞ and idle
in ðt; tþɛÞ.

Next we show that the worst-case instances can be obtained
among those whose AD-SWPT schedules do not involve a time t
between the earliest SPoint and the latest EPoint over all the
machines such that each machine is idle at t. The reason follows.
Assume that sðIÞ does not possess the aforementioned character-
istic. In other words, there exists a time t between the earliest
SPoint and the latest EPoint when all the machines are idle.
Thus we can split the instance I into two smaller instances that
consist of jobs scheduled before t and after t. Denote the two
instances by I′ and I″. According to the AD-SWPT rule, we can
readily discover that sðI′Þ and sðI″Þ maintain the starting times of
all the jobs same as in sðIÞ , i.e.,
sðIÞ ¼ sðI′ÞþsðI″Þ: ð2Þ
Given any feasible schedule of I, we can construct two feasible
schedules for I′ and I″ by keeping the starting times unchanging.
Since the optimal schedule is the one with the minimal objective
value among all the feasible schedules, it follows that

πðIÞZπðI′ÞþπðI″Þ: ð3Þ
Combining (2) and (3), we can obtain

sðIÞ
πðIÞ r

sðI′ÞþsðI″Þ
πðI′ÞþπðI″Þ rmax

sðI′Þ
πðI′Þ ;

sðI″Þ
πðI″Þ

� �
; ð4Þ

Table 1
Symbols/Notations description.

Notation Description

t the current decision time
p̂ jðtÞa the remaining processing time of job Jj at time t in a feasible schedule

sð�Þ the schedule constructed by AD-SWPT for a given instance. It also
refers to the objective value of the schedule when no confusion
arises

Sj the starting time of job Jj in the online schedule sð�Þ
Cj the completion time of job Jj in the online schedule sð�Þ
πð�Þ the optimal schedule for a given instance. It also refers to the

objective value of the schedule when no confusion arises

a According to its definition, p̂ jðtÞ equals pj if Jj have not started processing until
t, p̂ jðtÞ equals zero if Jj have been completed before or at t, and p̂ jðtÞ equals the
unfinished processing time if Jj is being processed at t.

J. Tao / Computers & Operations Research 43 (2014) 215–224216



Download English Version:

https://daneshyari.com/en/article/474667

Download Persian Version:

https://daneshyari.com/article/474667

Daneshyari.com

https://daneshyari.com/en/article/474667
https://daneshyari.com/article/474667
https://daneshyari.com

