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a b s t r a c t

This paper introduces an extension of the p-median problem in which the distance function between
units is calculated as the distance sum on the q most important variables out of a set of size m. This
model has applications in cluster analysis (for example, in sociological surveys), where analysts have a
large list of variables available for inclusion, but only a subset of them (true variables) is appropriate for
uncovering the cluster structure. Therefore, researchers must carefully separate the true variables from
the other before computing data partitions. Here we show that this problem can be formulated as a
mixed integer non-linear optimization model where clustering and variable selection are done
simultaneously. Then we provide two different linearizations and compare their performance with
the default method of clustering with all the variables (which is a p-median model) on a set of artifi-
cially generated binary data, showing that the model based on a radius formulation performs the best.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies the following clustering problem: suppose
that we are given a set U ¼ fuigni ¼ 1 of statistical units (for
example, persons answering a survey) that are measured with
a set of quantitative or qualitative features F ¼ ff kgmk ¼ 1 (for
example, questions of the survey). This information is collected
in a data matrix V ¼ ½vik�, where vik is the value that feature fk
takes for unit ui. Our goal is to find a subset of variables QDF of
fixed size q and to cluster the n statistical units into p clusters
such that the resulting clustering of U is the most accurate when
only the information of the variables of Q is used to decide the
clusters.

This problem emerges in Statistics, where it is recognized that
not all the variables are equally important in uncovering cluster
structure because including them deteriorates the effectiveness of
the clustering procedures [16,4] up to the point that misclassifica-
tion may become a serious problem. Variables that do not define
cluster structure are called “masking variables” [6] in order to
differentiate them from the other “true variables”. Two methods
considering variable selection that can be found in the clustering
literature are variable weighting and model based clustering.
Variable weighting [5] consists on determining weights for each
variable so that the distance function between units is not affected
by the masking variables. In model-based clustering [14,19] the

units are assumed to have been generated with certain probabil-
istic models and clustering is done by learning the associated
parameters and probabilities. Other methods can be found in [22].
It must be noted that all these methods are applied to continuous
variables and are computationally demanding.

In this paper we propose a combinatorial model for clustering
that selects simultaneously the best set QDF of variables, the
best set of medians PDU and the optimal data partition when
the criterion used is the minimization of the total distance inside
the clusters between the median of the cluster and the units that
belong to the cluster. This model can be seen as an extension of the
classical p-median problem where the computation of the dis-
tances depends on the selected variables Q. It is formulated as
follows:

min
PD U ; jPj ¼ p;
Q DF ; jQ j ¼ q

∑
ui AU

min dQij =ujAP
n o

;

where dQij is the distance between units i and j restricted to the
features of Q. Particularly, we use the Manhattan distance or
distance ℓ1, that is one of the most commonly used to cluster
ordinal or qualitative data, as in the applications that motivated
this research (see [1,3]). The Euclidean distance is also quite
popular in clustering (see, for example, [18]).

Almost all the previous papers in the literature on clustering
with variable selection have dealt exclusively with continuous
variables and, therefore, cannot be directly compared to the
research of this paper, which is focused on binary data. The only
exception is [4], where a heuristic method is developed for
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clustering and selecting variables in the case of binary data. This
method, based on a k-means approach [15], determines a promis-
ing initial subset of four features and then increases it one by one
while the objective function of the k-means satisfies a certain
condition. The model that we propose in this paper is different
because it is an exact method and we changed from a k-means
objective function to a p-median objective function. A p-median
approach has a long tradition in the clustering literature
[20,17,12,10,23] and, moreover, it is known that it has some
advantages in terms of robustness and interpretation, for example,
because the median representing the cluster is an element of the
sample [13].

As will be shown in Section 2, the p-median model can be
extended to consider the decision on what variables QDF to
select, but the natural formulation of this extension leads to a
quadratic non-convex problem. Instead of developing new solu-
tion tools for this non-linear model, our approach is to study
different mixed integer linearizations and to determine which one
is the most efficient. The first formulation is a direct linearization
of the initial quadratic model and the second is based on the so-
called radius formulation of the p-median problem [7].

The rest of the paper is organized as follows. In Section 2 the
non-linear model and the two linearizations are formulated.
A computational study is carried out in Section 3 and, finally,
some conclusions are given in Section 4.

2. Problem definition and formulations

Assume that we are given a sample U ¼ fuigni ¼ 1 of statistical
units. For every unit i, the set F ¼ ff kgmk ¼ 1 of statistical variables
(features) is measured. We assume that, as is common in
opinion polling or attitude surveys, variables fk are represented
by qualitative or ordinal data. If the data are qualitative, they
are represented by 0–1. If the data are ordinal with g occur-
rences, or they are represented by a Likert scale with a finite
number g of tiers, then we will refer to g as the dimension of
the scale.

Let vik be the record of variable k for unit i. The distance, or
difference, between unit ui and unit uj with respect to the feature
fk is dijk ¼ jvik�vjkj and the overall distance between ui and uj is the
1-norm:

dij ¼ ∑
m

k ¼ 1
dijk ¼ ∑

m

k ¼ 1
jvik�vjkj:

Suppose now that only a subset QDF of statistical variables
are considered relevant for the analysis and that, as a consequence,
the differences between the units are calculated using Q only.
The distance formula is thus expressed using the incidence vector
z of subset Q:

dij ¼ ∑
m

k ¼ 1
dijkzk;

where zk¼1 if f kAQ and zk¼0 otherwise.
The units are clustered using the p-median model and the min-

sum criterion, so that its outcome consists of p clusters and its
median is the most representative element (the cluster archetype).
We define binary variables yj; j¼ 1;…;n, that take value one if
unit j is a median (and zero otherwise), and binary allocation
variables xij, i; j¼ 1;…;n, that take value one if unit i is assigned to
cluster j (and zero otherwise). Then, imposing that only a subset
QDF of variables is to be used, we introduce binary variables
zk; k¼ 1;…;m, where zk¼1 if f kAQ (and zk¼0 otherwise).

The model obtained is the following:

ðF1Þ

Min: ∑
n

i ¼ 1
∑
n

j ¼ 1
∑
m

k ¼ 1
dijkzk

 !
xij

s:t: xijryj; i; j¼ 1;…;n;

∑
n

j ¼ 1
xij ¼ 1; i¼ 1;…;n;

∑
n

j ¼ 1
yj ¼ p;

∑
m

k ¼ 1
zk ¼ q;

xijZ0; i; j¼ 1;…;n;

yjAf0;1g; j¼ 1;…;n;

zkAf0;1g; k¼ 1;…;m:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:
This formulation is non-linear because of the quadratic terms in

the objective function. Moreover, the objective function is non-
convex because the distance matrix is not positive semidefinite
(the terms dijk can be arranged in such a way that the matrix is
composed of zeros on the main diagonal and has positive or zero
terms elsewhere). Since the potential to solve to optimality large
instances of a non-convex quadratic model is quite low, our goal is
to linearize this formulation F1.

Finally, it must be remarked that the classical p-median problem
is a particular case of this problem that appears when all variables zk
take value one.

2.1. Direct linearization formulation

Formulation F1 can be linearized quite straightforwardly by
introducing the new variables

wijk ¼ xijzk; i; j¼ 1;…;n; k¼ 1;…;m;

plus some well-definition constraints, which is a standard proce-
dure in the literature. The linearized model is

ðF2Þ

Min: ∑
n

i ¼ 1
∑
n

j ¼ 1
∑
m

k ¼ 1
dijkwijk

s:t: xijryj; i; j¼ 1;…;n;

∑
n

j ¼ 1
xij ¼ 1; i¼ 1;…;n;

∑
n

j ¼ 1
yj ¼ p;

∑
m

k ¼ 1
zk ¼ q;

wijkZxijþzk�1; i; j¼ 1;…;n; k¼ 1;…;m;

wijkrxij; i; j¼ 1;…;n; k¼ 1;…;m; ðaÞ
wijkrzk; i; j¼ 1;…;n; k¼ 1;…;m; ðbÞ
wijkZ0; i; j¼ 1;…;n; k¼ 1;…;m;

xijZ0; i; j¼ 1;…;n;

yjAf0;1g; j¼ 1;…;n;

zkAf0;1g; k¼ 1;…;m:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

We are not imposing that variables xij must be binary, but only
positive because we have a minimization problem in which
distances dijk are positive, and variables zk and yj are binary,
meaning that there is an optimal solution where all variables xij
are binary. Besides, inequalities (1a) and (1b) can be dropped out
because they are satisfied at every optimal solution.
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